
On the Design of Cryptographic APIs:
Primality Testing as a Case Study

Kenny Paterson

ETH Zürich

https://appliedcrypto.ethz.ch/

@kennyog

Joint work with Martin Albrecht, Jake Massimo and Juraj Somorovsky

 Apple
 CommonCrypto

Primality test:
CCBigNumIsPrime

Arguments:
&status – result
n – number to test

Method:
16 rounds of Miller-Rabin

Input

Output

Test

5

A closer look at n (1024 bit)

122623673100774902819890811512093121818009864395929257382
206929494220541500353599732762551419245399058398366502168
963509640168639794202705645034115138272912046190084444976
198156980059092407987735996562308131806635633617847615677
949071026045920492821200676854540540234658043716124914438
158326334228684623784307

n =

91172234887816366836097425833085947590883244148569730116910168
85945882725937628451820237118931938464383894195701899539538797
27667482485082645906798847756809083320529285386430903407807541
06934509176118141227213388798199033781253964461181799976601059
228947314134088322133929427108368934611923378815858526829503

• This n was carefully constructed to always be declared prime by the 16 rounds
of fixed-base Miller-Rabin testing used by Apple’s CommonCrypto.

• 512 and 2048 bit examples are also composites of this form.

1844236408212452540995102639897261852755552643547799634597
30437466872086414580403681648321609499543203 *

2083987141280071371324465983083905893613774487209013587094
9539433756545764847585616026260341873448381827 *

3190528986207542895921527567022263005267106073337693367853
3365681768870949722409836925159638443420973947

n = p
1
 p

2
 p

3
where p

i
 = k

i
(p

1
 - 1) + 1 with (k

2
, k

3
) = (113,173)

n =

A closer look at n (1024 bit)

Disclosure

91172234887816366836097425833085947590883244148569730116910168
85945882725937628451820237118931938464383894195701899539538797
27667482485082645906798847756809083320529285386430903407807541
06934509176118141227213388798199033781253964461181799976601059
228947314134088322133929427108368934611923378815858526829503

Library analysis

*

Library analysis

*

10

For each library we studied:
• Which primality tests are being

performed?
• How are the tests implemented?
• How do these tests perform against

maliciously generated composite
numbers?

Library analysis

*

11

Current OpenSSL API for primality testing

int BN_is_prime_fasttest_ex(const BIGNUM *w, int
checks, BN_CTX *ctx_passed, int do_trial_division,
BN_GENCB *cb)

• checks = 0: defaults to setting number of MR rounds based on size of
input.
• Typically 2 or 3 MR rounds for inputs of cryptographic size.
• Designed for random input testing, not appropriate when testing

maliciously-generated inputs.

Bad Diffie-Hellman in OpenSSL

• Set q = q
1
q

2
…q

9
.

• Then q fools a single random-base MR
test with probability 1/256.

• p = 2q+1 is prime and has 1024 bits.

• We can solve DLP in subgroup of order
q in “only” O(264) operations.

• OpenSSL prior to 1.1.0i validates these
parameters as being good for DH with
probability 2-24.

Analysis: Bad Diffie-Hellman in OpenSSL

• The OpenSSL developers misused their primality testing API in their own
library!

• They used checks = 0 defaulting to “random case” instead of “malicious
case” test parameters.

• Can lead to acceptance of weak DH parameters (with low prob.)

• Attack scenario: PAKE protocol in which attacker impersonates server,
offers bad DH parameters, leading to client password breach.

Designing a better API

int BN_is_prime_fasttest_ex(const BIGNUM *w,
int checks, BN_CTX *ctx_passed, int
do_trial_division, BN_GENCB *cb)

Research Question:
Is it possible to design a robust and performant
primality test whose API has a single input: n, the
number being tested?

• Having a simple API means the primality test cannot be fine-tuned to
different use cases by a well-informed developer.

• OpenSSL’s checks and do_trial_division options are no longer
available.

• The test must always use pessimistic settings because inputs may be
malicious.

• What is the impact on performance?

Designing a better API

• MR64 test has worst-case error rate 2-128 on composite input, and error
rate 0 on prime input.
• Simple to implement, widely supported in existing libraries.

• For comparison: MRAC (Miller-Rabin average case): what OpenSSL
currently does by default
• Has worst-case error rate 2-4 on adversarial input.
• But it’s fast!

Candidate for underlying primality test

• Primality tests typically use trial division with small divisors to speed up
performance.

• For example, OpenSSL offers the option to do trial division on the first
2047 odd primes (selected via the do_trial_division flag).

• How does the amount of trial division affect test performance?

Trial division

Running time of OpenSSL default (MRAC) and MR64

Tuning trial division

Overkill!
More

sensible

• MR64 using trial division with r = 128 primes is 17% faster than current
OpenSSL for random, odd, 1024-bit inputs!

• More generally, we can tune r to the input size k.

Designing a better API

• OpenSSL uses sieving and primality testing (with checks=0,
do_trial_division=0) to generate random primes.

• MR64 does up to 64 rounds of MR and redundant trial division.

• So what is the perf impact of using MR64 as a drop-in replacement in OpenSSL?

Prime Generation Use Case

• We can even beat OpenSSL by 5% if we allow ourselves to tune sieving as well!

• Our proposed API for MR64 wraps the existing OpenSSL function.

• But we also need to modify function internals to tune trial division.

• What about legacy code using the existing API?
• We can modify the existing OpenSSL primality test to force the use of MR64,

no matter what the calling code asks for!

Deploying the API

Deploying the API – OpenSSL

Deploying the API – OpenSSL

https://github.com/openssl/openssl/pull/9272/commits/d11daf556285030492bf3b3c0e8da67f5ebd32ed

Deploying the API – OpenSSL

https://github.com/openssl/openssl/pull/9272/commits/d11daf556285030492bf3b3c0e8da67f5ebd32ed

Concluding Remarks

• Elevate the study of crypto APIs to a first-class research concern.
• cf. Nonce-based AEAD, Curve25519, NaCl crypto library,…
• [LCWZ14,GS16, NKMB17,…] on crypto API design/testing.

• Simplicity and security versus flexibility and performance.

• If we continue to get it wrong for a classical task like primality testing,
what hope do we have for more advanced cryptographic functions?

• Interested? We are hiring at ETH Applied Cryptography!

Further reading

• M.R. Albrecht, J. Massimo, K.G. Paterson and J. Somorovsky. Prime and
Prejudice: Primality Testing Under Adversarial Conditions. In D. Lie, M.
Mannan, M. Backes and X. Wang (eds.), ACM CCS, 281-298, 2018.

Full Paper: https://eprint.iacr.org/2018/749

• S.D. Galbraith, J. Massimo and K.G. Paterson. Safety in Numbers: On the
Need for Robust Diffie-Hellman Parameter Validation. PKC 2019(2), LNCS
11443, 379-407, 2019.

Full Paper: https://eprint.iacr.org/2019/032

• J. Massimo and K.G. Paterson. A Performant, Misuse-Resistant API for
Primality Testing. In submission.

