
The Web PKI: Fundamental, Fragile, Fixable?

8 November 2019

Thyla van der Merwe

l

l

Trust TLS PKI = +

l

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

l

Fundamental to security on the Web!

l

> 500 000 private keys compromised!

l

MITM Impersonate

TLS TLS

> 500 000 private keys compromised!

l

l

This system is pretty fragile!

l

We care about making it more robust.

Infrastructure
 CCADB, CAB Forum

Revocation
 CRLite

fuv

Delegated Credentials
 For TLS 1.3

Kathleen Wilson Wayne Thayer J.C. JonesDana Keeler Kevin Jacobs

l

We care about making it more robust.

Infrastructure
 CCADB, CAB Forum

Revocation
 CRLite

fuv

Delegated Credentials
 For TLS 1.3

Kathleen Wilson Wayne Thayer J.C. JonesDana Keeler Kevin Jacobs

Franziskus Kiefer Moritz Birghan Dan Veditz Marcus Burghardt

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

Root store: List of trusted CA root
certificates - strict application/inclusion

process per root store.

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

Root store: List of trusted CA root
certificates - strict application/inclusion

process per root store.

Repository of information
about CAs and their

certificates.

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

Root store: List of trusted CA root
certificates - strict application/inclusion

process per root store.

Managing root stores not
always seen as a core

business activity.

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

Consortium of CAs and browser vendors
that comes up with and maintains
industry guidelines concerning the

issuance and management of certificates.

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

Consortium of CAs and browser vendors
that comes up with and maintains
industry guidelines concerning the

issuance and management of certificates.

Browser proposal to
shorten certificate lifetimes

- good for security but
fewer profits for CAs?

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

Consortium of CAs and browser vendors
that comes up with and maintains
industry guidelines concerning the

issuance and management of certificates.

l

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

l

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

revocation

Owner requests → CA
produces public, verifiable
attestation that the certificate
should no longer be trusted.

Is this a revoked certificate?

l

Revocation is important!

l

Revocation is important!

Revocation is broken!

l

Revocation is important!

Revocation is broken!

CRLs OCSP

serial number

serial number

serial number

serial number

serial number

CA signature

URL 10 days?

CA

OCSP responder

URL
O

CS
P

re
qu

es
t

O
CS

P
re

sp
on

se
 C

A
si

gn
at

ur
e

OCSP
CA

OCSP responder

URL

O
CSP request

O
CSP response

CA signature

OCSP
response

 a few days?

l

Fail-open vs Fail-closed

CRLs OCSP

serial number

serial number

serial number

serial number

serial number

CA signature

URL 10 days?

CA

OCSP responder

URL
O

CS
P

re
qu

es
t

O
CS

P
re

sp
on

se
 C

A
si

gn
at

ur
e

OCSP
CA

OCSP responder

URL

O
CSP request

O
CSP response

CA signature

OCSP
response

Must-Staple

 a few days?

l

Fail-open

Delays 200 ms

Privacy concerns

Push all revocation information to all
clients?

CRLSet OneCRL

Push all revocation information to all
clients?

CRLSet OneCRL

Size??

CRLite

Certificate
Ecosystem

Certificate
Ecosystem

Use a probabilistic data structure that supports queries for
the finite set of unexpired certificates.

Certificate
Ecosystem

Use a probabilistic data structure that supports queries for
the finite set of unexpired certificates.

Cascading Bloom Filters

Bloom Filters

0 0 0 0 0 0 0 0 0 0 0 0

m = 12 k = 4
for array indices

Bloom Filters

0 0 0 0 0 0 0 0 0 0 0 0

m = 12 k = 4

Let’s put data item d in the filter:

Bloom Filters

0 0 0 0 1 0 0 0 0 0 0 0

m = 12 k = 4

Let’s put data item d in the filter:
Compute h_1(d) = 4 → set bit in index 4 to 1.

Bloom Filters

0 0 0 0 1 0 0 0 0 0 0 1

m = 12 k = 4

Let’s put data item d in the filter:
Compute h_1(d) = 4 → set bit in index 4 to 1.
Compute h_2(d) = 11 → set bit in index 11 to 1.

Bloom Filters

0 0 0 0 1 0 0 0 0 1 0 1

m = 12 k = 4

Let’s put data item d in the filter:
Compute h_1(d) = 4 → set bit in index 4 to 1.
Compute h_2(d) = 11 → set bit in index 11 to 1.
Compute h_3(d) = 9 → set bit in index 9 to 1.

Bloom Filters

0 0 1 0 1 0 0 0 0 1 0 1

m = 12 k = 4

Let’s put data item d in the filter:
Compute h_1(d) = 4 → set bit in index 4 to 1.
Compute h_2(d) = 11 → set bit in index 11 to 1.
Compute h_3(d) = 9 → set bit in index 9 to 1.
Compute h_4(d) = 2 → set bit in index 2 to 1.

Bloom Filters

0 0 1 0 1 0 0 0 0 1 0 1

m = 12 k = 4

Let’s put data item d in the filter:
Compute h_1(d) = 4 → set bit in index 4 to 1.
Compute h_2(d) = 11 → set bit in index 11 to 1.
Compute h_3(d) = 9 → set bit in index 9 to 1.
Compute h_4(d) = 2 → set bit in index 2 to 1.

Add another
item d’?

Bloom Filters

0 1 1 0 1 1 0 1 0 1 0 1

m = 12 k = 4

Let’s put data item d in the filter:
Compute h_1(d) = 4 → set bit in index 4 to 1.
Compute h_2(d) = 11 → set bit in index 11 to 1.
Compute h_3(d) = 9 → set bit in index 9 to 1.
Compute h_4(d) = 2 → set bit in index 2 to 1.

Add another
item d’?

Bloom Filters

0 1 1 0 1 1 0 1 0 1 0 1

m = 12 k = 4

Is d* in the filter?
If any of the h_i(d*) values is 0
then DEFINITELY NOT in the
filter.

If all of the h_i(d*) values are 1
then MAYBE in the filter.

Bloom Filters

0 1 1 0 1 1 0 1 0 1 0 1

m = 12 k = 4

Is d* in the filter?
If any of the h_i(d*) values is 0
then DEFINITELY NOT in the
filter.

If all of the h_i(d*) values are 1
then MAYBE in the filter.

So maybe it’s a legitimate
insertion, maybe it’s not.

Bloom Filters

0 1 1 0 1 1 0 1 0 1 0 1

m = 12 k = 4

Will have false positives → rate p determined by m, k, occupancy.

Say we want to store R U. R is the set of revoked certificates,
and U is the finite set of unexpired certificates. R S = U.

But there will be false positives!

Say we want to store R U. R is the set of revoked certificates,
and U is the finite set of unexpired certificates. R S = U.

Store those in another bloom filter.

 BF1

But there are going to be
false positives

 BF2

But there are going to be
false positives

no false positives*

Cascading Bloom Filters

 BFx

* chance of false positives is negligible

But there are going to be
false positives

But there are going to be
false positives

no false positives

R
If cert in not in BF1, then definitely
not in R. If cert is in BF1, then we
don’t know.

If cert in BF1 but not in BF2, then in
R. If cert is in BF1 and BF2, then we
don’t know.

If cert in BF1 and BF2 but not in BF3,
then definitely not in R. If cert is all
three, then in R.

3 levels

Cascading Bloom Filters

CRLite Architecture

CRLite Aggregator

CRLite Architecture

CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers. Larisch et al.
IEEE S&P 2017

CRLite Architecture

Implementing CRLite for Firefox

Individuals’ security
and privacy on the

Internet are
fundamental and

must not be treated
as optional.

Principle 4

● CRL-like properties
● Small data sizes (fast to parse)
● Incremental updates
● Scales well
● Builds on useful properties of CT

Implementing CRLite for Firefox

4 x

65 M 5 MB

0.3 MB

Implementing CRLite for Firefox

Have our OneCRL
mechanism for signing
and pushing.

4 x 0.3 MB

65 M 5 MB

Implementing CRLite for Firefox

Paper did have a prototype using Firefox → built as a Firefox
extension.

Academic Prototype Mozilla Prototype

TLS APIs for cert checking
- JavaScript (11.9MB memory)

Native code (C++, Rust, some JS)

10ms to check a cert chain
(6ms with cache tricks)
- includes parsing certs (API

provides unparsed certs)

 0.01 - 0.04 ms

- We check end-entity certs
- Use OneCRL -> intermediates

Are we done yet?

Are we done yet?

Are we done yet?

l

PKI
Root CA

Intermediate CA

Intermediate CA

signature

signature

signature

TLS

lifetime usage

l

Low trust zones?

Server Operator

l

Low trust zones?

Server Operator

l

Low trust zones?

Server Operator
short-lived certs

l

Low trust zones?

Server Operator
short-lived certs

Operationally costly!

l

Low trust zones?

Server Operator
Key server

Keyless SSL
Geo Key
Manager

l

Low trust zones?

Server Operator
Key server

Keyless SSL
Geo Key
Manager

SLOW!

l

TLS 1.3

Delegated Credentials

❏ Server operator issues credentials within scope of
certificate

❏ Delegated credential is bound to the delegation certificate
❏ Short-lived - no longer than 7 days

DC minting

Low trust zone

 Front-end Back-end

Validity period Public key

sig

Public key

Can push DCs
every few

hours

l

Why?

❏ Limited exposure
❏ Reduction in CA interaction overhead
❏ Reduction in latency

TLS 1.3

l

Why?

❏ Limited exposure
❏ Reduction in CA interaction overhead
❏ Reduction in latency

TLS 1.3

l

Are these initiatives going to help us
move towards a more robust Web PKI?

Academia Industry

l

Bonus Slides

But there are going to be
false positives

But there are going to be
false positives

no false positives

CRLite: Cascading Bloom Filters

R
If d* in not in BF1, then definitely not
in R. If d* is in BF1, then we don’t
know.

If d* in BF1 but not in BF2, then in R.
If d* is in BF1 and BF2, then we don’t
know.

If d* in BF1 and BF2 but not in BF3,
then definitely not in R. If d* is all
three, then in R.

3 levels

But there are going to be
false positives

But there are going to be
false positives

no false positives

CRLite: Cascading Bloom Filters

R

Starting at i = 1, keep going until u
not in BF_i.

● If i is odd, u not in R.
● If i is even, u in R.

If u in all BF_i, look at number of
levels, l.

Is u in U in R?

● If l is odd, u in R.
● If l is even, u not in R.

CRLite: Cascading Bloom Filters

CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers. Larisch et al, IEEE S&P 2017

If d* in not in BF1, then definitely not
in R, but not the other way round.

BF2 serves as a “blacklist” to BF1;
contains items that should not be in
BF1. If d* in BF1 but not in BF2, then
in R.

If d* in BF1 and BF2 but not in BF3,
then definitely not in R. Check for
false positives again - only from FP1.

CRLite: Cascading Bloom Filters
Want the minimum possible size…

Bloom filter minimized:
 k = log_2(1/p) and m ≅ 144r log_2(1/p)

How do we set for p for filter
cascades?

Analysis → p_1 for BF_1, p for other BFs
r = |R|, s = |S|
p_1 = r√p/s

p = 0.5 → close to theoretical lower bound Simulations confirm!

Size of R dominates, does not grow considerably with S!

CRLite: Security and Corner Cases

MITM - files are signed and timestamped by aggregator

Forcing fail-open? - CRLite allows for a fail-closed paradigm

Backdating - Signed Certificate Timestamps (SCTs) should help to
guard against this

Created in the gap - NotBefore date should be checked and
compared to filter timestamp - fall back to traditional methods

