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This system is pretty fragile! 
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revocation

Owner requests → CA 
produces public, verifiable 
attestation that the certificate 
should no longer be trusted. 

Is this a revoked certificate?
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Fail-open  

Delays 200 ms

Privacy concerns 
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Push all revocation information to all 
clients? 

CRLSet OneCRL

Size??

CRLite
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Use a probabilistic data structure that supports queries for 
the finite set of unexpired certificates.

Cascading Bloom Filters
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Bloom Filters

0 1 1 0 1 1 0 1 0 1 0 1

m = 12 k = 4

Is d* in the filter?
If any of the h_i(d*) values is 0 
then DEFINITELY NOT in the 
filter. 

If all of the h_i(d*) values are 1 
then MAYBE in the filter. 

So maybe it’s a legitimate 
insertion, maybe it’s not. 



Bloom Filters

0 1 1 0 1 1 0 1 0 1 0 1

m = 12 k = 4

Will have false positives → rate p determined by m, k, occupancy. 



Say we want to store R     U. R is the set of revoked certificates, 
and U is the finite set of unexpired certificates. R    S = U.

But there will be false positives! 



Say we want to store R     U. R is the set of revoked certificates, 
and U is the finite set of unexpired certificates. R    S = U.

Store those in another bloom filter.



 BF1

But there are going to be 
false positives

 BF2

But there are going to be 
false positives

 
no false positives*

Cascading Bloom Filters

 BFx

* chance of false positives is negligible
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But there are going to be 
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no false positives

R
If cert in not in BF1, then definitely 
not in R. If cert is in BF1, then we 
don’t know.

If cert in BF1 but not in BF2, then in 
R. If cert is in BF1 and BF2, then we 
don’t know.  

If cert in BF1 and BF2 but not in BF3, 
then definitely not in R. If cert is all 
three, then in R.  

3 levels

Cascading Bloom Filters
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CRLite Aggregator



CRLite Architecture

CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers. Larisch et al. 
IEEE S&P 2017



CRLite Architecture



Implementing CRLite for Firefox

Individuals’ security 
and privacy on the 

Internet are 
fundamental and 

must not be treated 
as optional.

Principle 4

● CRL-like properties
● Small data sizes (fast to parse)
● Incremental updates
● Scales well
● Builds on useful properties of CT
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Implementing CRLite for Firefox

Have our OneCRL 
mechanism for signing 
and pushing.

4 x 0.3 MB

65 M 5 MB



Implementing CRLite for Firefox

Paper did have a prototype using Firefox → built as a Firefox 
extension. 

Academic Prototype Mozilla Prototype

TLS APIs for cert checking
- JavaScript (11.9MB memory)

Native code (C++, Rust, some JS)

10ms to check a cert chain 
(6ms with cache tricks)
- includes parsing certs (API 

provides unparsed certs)

                    0.01 - 0.04 ms 

- We check end-entity certs
- Use OneCRL -> intermediates
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Low trust zones?

Server Operator
short-lived certs

Operationally costly!
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Low trust zones?

Server Operator
Key server

Keyless SSL
Geo Key 
Manager 

SLOW!
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TLS 1.3

Delegated Credentials

❏ Server operator issues credentials within scope of 
certificate

❏ Delegated credential is bound to the delegation certificate
❏ Short-lived - no longer than 7 days

DC minting

Low trust zone

    Front-end     Back-end

Validity period Public key

sig

Public key

Can push DCs 
every few 

hours
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Why?

❏ Limited exposure 
❏ Reduction in CA interaction overhead
❏ Reduction in latency

TLS 1.3
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Are these initiatives going to help us 
move towards a more robust Web PKI?  

Academia Industry
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Bonus Slides  
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CRLite: Cascading Bloom Filters

R

Starting at i = 1, keep going until u 
not in BF_i. 

● If i is odd, u not in R.
● If i is even, u in R. 

If u in all BF_i, look at number of 
levels, l.    

Is u in U in R?

● If l is odd, u in R.
● If l is even, u not in R. 



CRLite: Cascading Bloom Filters

CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers. Larisch et al, IEEE S&P 2017

If d* in not in BF1, then definitely not 
in R, but not the other way round. 

BF2 serves as a “blacklist” to BF1; 
contains items that should not be in 
BF1. If d* in BF1 but not in BF2, then 
in R.  

If d* in BF1 and BF2 but not in BF3, 
then definitely not in R. Check for 
false positives again - only from FP1.  



CRLite: Cascading Bloom Filters
Want the minimum possible size…

Bloom filter minimized: 
 k = log_2(1/p) and m ≅ 144r log_2(1/p) 

How do we set for p for filter 
cascades? 

Analysis → p_1 for BF_1, p for other BFs
r = |R|, s = |S|
p_1 = r√p/s

p = 0.5 → close to theoretical lower bound Simulations confirm!

Size of R dominates, does not grow considerably with S! 



CRLite: Security and Corner Cases

MITM - files are signed and timestamped by aggregator

Forcing fail-open? - CRLite allows for a fail-closed paradigm

Backdating - Signed Certificate Timestamps (SCTs) should help to 
guard against this

Created in the gap - NotBefore date should be checked and 
compared to filter timestamp - fall back to traditional methods


