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ABSTRACT
Many future electronic identity cards will be equipped with a con-
tact-less interface. Analysts expect that a significant proportion of
future mobile phones support Near Field Communication (NFC)
technology. Thus, it is a reasonable approach to use the cell phone
as mobile smart card terminal, which in particular supports the
Password Authenticated Connection Establishment (PACE) proto-
col to ensure user consent and to protect the wireless interface be-
tween the mobile phone and the smart card. While there are effi-
cient PACE implementations for smart cards, there does not seem
to be an efficient and platform independent solution for mobile ter-
minals. Therefore we provide a new implementation using the Java
Micro Edition (Java ME), which is supported by almost all modern
mobile phones. However, the benchmarks of our first, straightfor-
ward PACE implementation on an NFC-enabled mobile phone have
shown that improvement is needed. In order to reach a user friendly
performance we implemented an optimized version, which, as of
now, is restricted to optimizations which can be realized using fea-
tures of existing Java ME libraries.

In the work at hand we present a review of the relevant algo-
rithms and provide benchmarks of the corresponding arithmetic
functions in different Java ME libraries. We discuss the differ-
ent optimization approaches, introduce our optimized PACE im-
plementation, and provide timings for a desktop PC and a mobile
phone in comparison to the straightforward version. Finally, we
investigate potential side channel attacks on the optimized imple-
mentation.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection—authentication, unauthorized access
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1. INTRODUCTION
Many countries around the world have engaged in the deploy-

ment of electronic identity (eID) cards [2, 9, 29]. The European
Committee for Standardization (Comité Européen de Normalisa-
tion, CEN) is currently developing the technical standard series
CEN prTS 15480 [7], which defines services, command sets, ap-
plication interfaces and profiles for European Citizen Cards. [7,
Part 4, Annex A] specifies card application templates and there
is a profile, which specifies an “eID application with mandatory
ICAO functionality and conditional digital signature functionality”.
This profile will be implemented for example by the forthcoming
German eID card [10] and may serve as blueprint for other citi-
zen cards, which also provide machine readable travel document
functionality as specified by the International Civil Aviation Or-
ganization (ICAO) [15–17]. Such citizen cards will in particular
provide a contact-less interface according to [19] and support ver-
sion 2 of the Extended Access Control (EAC) protocol according
to [11]. Because analysts expect [23] that a significant proportion
of future mobile phones will be equipped with Near Field Com-
munication (NFC) technology [21, 22], it is worth to investigate
whether NFC-enabled phones may serve as smart card terminals
for mobile European Citizen Card applications.

The EAC protocol may in particular be used together with the
Password Authenticated Connection Establishment (PACE) [11,
Section 4.2] protocol. PACE ensures user consent and protects the
wireless channel between the mobile phone and the smart card. It
is specified in a way that allows implementing it using different
cryptographic primitives. The work at hand focuses on PACE re-
alized using Elliptic Curve Cryptography (ECC), especially on the
version used in the forthcoming German eID card.



There are already very efficient hardware specific PACE imple-
mentations for low power devices written in C and Assembler [34].
In order to support a maximum of mobile devices without depend-
ing on special hardware or operating systems we provide a Java
Micro Edition (Java ME) implementation of PACE. But while our
reference Java implementation of PACE, which is straightforward
and contains no optimizations, performs well on typical desktop
systems (cf. Table 9), the efficient implementation on a mobile
phone turns out to be a challenging task. Various optimizations are
required in order to come up with a user friendly performance.

The optimizations investigated here are restricted to those which
can be realized using features existing libraries for Java ME pro-
vide. Adaptations of algorithms to the special needs of the PACE
protocol and their implementation are subject to ongoing work.

The paper is structured as follows. Section 2 provides the nec-
essary background on the PACE protocol. Section 3 gives an
overview of efficient elliptic curve (EC) point multiplication algo-
rithms including the number of involved point additions and dou-
blings. Section 4 discusses different approaches to optimize the
PACE implementation. Section 5 provides benchmarks for large
number arithmetic in different Java ME libraries. It presents the
main aspects of the optimized implementation and compares the
resulting timings to those of the reference implementation. This
is done separately for different Cryptographic Service Providers
(CSP) as well as on desktop PC and cell phone. Section 6 addresses
potential side channel vulnerabilities of the optimized implementa-
tion. Section 7 gives an outlook on future work and improvements
currently restricted by hard- or software limitations. Section 8 sum-
marizes the presented work and concludes the paper.

2. BACKGROUND ON PACE
PACE was developed by the German Federal Office for Informa-

tion Security (Bundesamt für Sicherheit in der Informationstech-
nik, BSI) and is designed to be free of patents. Security analyses
of the PACE protocol can be found in [3, 34]. From this point on
we use the terms and notation introduced in [11]. There, the term
for a contact-less smart card is Proximity Integrated Circuit Card
(PICC) and the contact-less smart card terminal is called Proximity
Coupling Device (PCD).

Besides other things, PACE establishes a shared session key be-
tween the PICC and the PCD using the well known Diffie-Hellman
(DH) key agreement protocol [8]. For elliptic curves this works
as follows: Two parties A and B want to agree on a shared key.
Each party selects a secret scalar dA and dB respectively. Using a
public EC point Q then A computes QA = dA ∗ Q and B com-
putes QB = dB ∗ Q. After exchanging the results, A computes
QAB = dA ∗QB and B computes QAB = dB ∗QA. The common
key is the x-coordinate of QAB.

As the DH key agreement does not support authentication of the
communication partners it is vulnerable to man-in-the-middle at-
tacks. In order to prevent this and to ensure user consent, PACE
uses a password-based protocol (see [4, Section 7] for similar pro-
tocols of this type) to protect the wireless communication interface
between the PCD and the PICC before the PICC is accessed. In the
most common scenario the password π is a Personal Identification
Number (PIN), which is permanently stored in the PICC and is en-
tered into the PCD by the user. As the password is used during the
calculation of the session key, entering a wrong password leads to
different session keys on both sides which causes the connection
establishment to fail.

Figure 1 provides an overview of the steps of the PACE protocol.
Before the protocol starts the PCD needs to read the domain param-
eters D from the PICC, which contain a common base point G and

PICC PCD

(a) Kπ = KDFπ(π) Kπ = KDFπ(π)

(b) z = E(Kπ, s)
z−→ s = D(Kπ, z)

(c) Y = y ·G X←− X = x ·G
Y−→

(d) H = y ·X H = x · Y
(e) G′ = s ·G+H G′ = s ·G+H

(f) P̃KPICC = S̃KPICC ·G′
P̃KPCD←− P̃KPCD = S̃KPCD ·G′

P̃KPICC−→
(g) K = S̃KPICC · P̃KPCD K = S̃KPCD · P̃KPICC

(h) KENC = KDFENC(K) KENC = KDFENC(K)

(i) KMAC = KDFMAC(K) KMAC = KDFMAC(K)

(j) TPICC =
TPCD←− TPCD =

MAC(KMAC, P̃KPCD)
TPICC−→ MAC(KMAC, P̃KPICC)

Figure 1: PACE [11, Chapter 4.2]

related ECC1 parameters. The values x, y, S̃KPCD and S̃KPICC

are uniformly chosen random numbers smaller than the order r of
the elliptic curve.

1. As depicted in step (b), the PICC chooses a nonce s uni-
formly at random and encrypts it using the encryption func-
tion E(key, ·) with the key Kπ derived in step (a) from the
shared password π. The PCD decrypts the cipher text using
the decryption function D(key, ·) and the same key Kπ to
obtain the nonce s.

2. Now both parties use s to generate new domain parameters
D′ = Map(D, s), which in particular contain a new com-
mon base point G′, which is used for the subsequent Diffie-
Hellman key agreement. There are two options for the im-
plementation of the Map-function:

• Generic Mapping
The Generic Mapping [11, A.3.4.1] shown in steps (c) –
(e) already has been supported in version 1 of the PACE
protocol. It is used by the German eID card, which is
issued since November 2010. The new base point G′

is given as G′ = s · G + H , where H is agreed upon
by the two communication partners in an anonymous
Diffie-Hellman key agreement.
• Integrated Mapping

In Integrated Mapping [18], which is only supported by
version 2 of the PACE protocol, the new base point G′

is computed as G′ = f(R(s ‖ t)). Where t is chosen
by the PCD and sent to the PICC, the pseudo-random
function R is specified in [30] and the function f will
most likely be based on [14] and [31]. Focusing on the
German eID card which uses the Generic Mapping by
now, we do not investigate the Integrated Mapping any
further in the present work.

3. As shown in steps (f) – (g), the PICC and the PCD respec-
tively choose an ephemeral private key (S̃KPICC, S̃KPCD)
uniformly at random and perform a Diffie-Hellman key
agreement based on G′. Both calculate a common secret
point K.

1The specification of the PACE protocol in [11] also covers multi-
plicative groups over finite fields. Here we present our results for
groups of points on elliptic curves. The results can be applied to
multiplicative groups analogously.



algorithm parameter
choices

complexity #precomp.
points

left-to-right binary - 128A+256D -

NAF - 85A+ 256D -

w-NAF w = 5 50A+ 257D 7

Sliding Window NAF w = 5 50A+ 257D 10

Table 1: Single point multiplication. The window parameters
w are chosen to be optimal for the 256-bit curves. The given
complexities in DBL (D) and ADD (A) operations are approxi-
mate.

4. Steps (h) and (i) depict how the keys KENC for message en-
cryption and KMAC for message authentication are derived
from the common secret K using the key derivation func-
tions KDFMAC and KDFENC [11].

5. In step (j) both parties calculate a token (TPICC, TPCD) with
the use of a MAC-function MAC(key, ·) which is a keyed
hash computation using the key KMAC. These tokens are
then used to perform a mutual key confirmation.

3. OPTIMIZED POINT MULTIPLICATION
Since the point multiplication is one of the biggest run-time con-

sumers (cf. Section 5.1) in the PACE protocol, it promises the most
potential for optimization. As an efficient point multiplication al-
gorithm is the basis for an efficient implementation, we present the
most common multiplication algorithms in this chapter.

Our analysis of the point multiplication algorithms is based on
[12] and focuses mainly on the complexity of given algorithms. As
we do not change existing algorithms, we do not go into details
how the given algorithms work.

We denote the length of a scalar e by λ(e) as the number of
binary digits. The cost of the group operation (addition) "+" is
denoted by ADD (A). The cost of the scalar multiplication "·" is
denoted by MULT (M), the cost of point doubling by DBL (D) and
the cost of an interleaved multiplication (e1 ·P1+e2 ·P2) by PSUM.
Note that in general MULT < PSUM < 2 MULT holds if the in-
volved scalars and points have similar magnitudes respectively.

The complexity evaluation and the notation of the algorithms in
this section is according to [12] and for the ECC and PACE param-
eters employed by the upcoming German eID card. The relevant
values are: λ(r) = λ(x) = 256;λ(s) = 128.

3.1 Review of Basic Elliptic Curve Single
Point Multiplication Techniques

A variety of algorithms can be used to implement the single point
multiplication on an elliptic curve. Compared to the most basic
algorithm, the left-to-right binary method, the more sophisticated
algorithms employ time-memory trade offs to speed up the com-
putation. Table 1 gives an overview of the complexity of available
algorithms. The formulas used to determine the complexity are
shown in Table 2.

The left-to-right binary method processes the bits of e from left
to right one at a time. The internal intermediate result is initialized
with the point at infinity. Each step doubles the current intermediate
result and adds P each time a nonzero digit is processed. In the
NAF methods e is transformed into the non-adjacent form (NAF)
at first to reduce the density of nonzero digits to 1/3 on average,
therewith reducing the number of point additions. In the window
methods multiples of P are precomputed and stored in additional
memory. Then digits of e are scannedw at a time and the according

algorithm complexity formula #precomp. points

left-to-right binary λ(e)
2 A + λ(e)D -

NAF λ(e)
3 A + λ(e)D -

w-NAF (2w−2 − 1 +
λ(e)
w+1 )A +

(λ(e) + 1)D
2w−2 − 1

Sliding Window NAF (
2w−(−1)w

3 − 1 +
λ(e)

w+v(w)
)A + (λ(e) + 1)D

2w−(−1)w

3 − 1

v(w) = 4
3 −

(−1)w

3·2w−2

Table 2: Complexity evaluation formulas of unknown point
multiplication algorithms [12]

algorithm parameter
choices

complexity
evaluation

#precomp.
points

left-to-right binary - 128A 256

Windowing w = 4 77A 64

Windowing NAF w = 5 71A 52

Table 3: Fixed point multiplication with off-line precomputa-
tion in terms of expected point additions (A). The window pa-
rameters w are chosen to be optimal for the 256-bit curves.

multiple of P is taken from the precomputed points and added.
This further reduces the number of ADDs.

The memory demands of the methods given in Table 1 are max-
imal for the Sliding Window NAF method. Here 10 additional
points (and the two we also have in the left-to-right method) need to
be stored. This sums up to 768 bytes (computed as 12 ·2 ·32). Note
that the precomputations in Table 1 are dynamic precomputations,
i.e. have to be done each time a scalar multiplication is conducted.

If the multiplication involves a known point, off-line precompu-
tations can be used to spare point doublings.2 This can be done for
all algorithms listed in Table 1. For each doubling operation to be
spared in the non-window algorithms one additional point has to
be stored in the device’s non-volatile memory (NVM). This sums
up to 16.384 bytes to store all 256 additional points, which is not
a problem on mobile phones. Note that these precomputed values
can be considered public information and do not need to be kept
secret. They need, however, integrity protection to avoid their ma-
nipulation.

Table 3 gives the complexity of basic algorithms used with off-
line precomputation and the number of points to be stored in the
NVM. Table 4 provides the complexity for the method based on the
exponentiation algorithm due to Lim and Lee [26], including the
total complexity if precomputation is done on-line. The formulas
used for complexity evaluation are given in Table 5. The main idea
of the method by Lim and Lee is to divide e intow bit strings of the

2In the future (some) precomputed points might be saved on the
eID cards together with the base point, assumed that the space and
bandwidth constraints will allow for that.



parameter w parameter v complexity
evaluation

complexity
incl.

precomp.

#precomp.
points

4 1 64A+ 63D 71A+255D 15

4 2 64A+ 31D 78A+255D 30

5 1 51A+ 50D 66A+255D 31

5 2 51A+ 25D 81A+255D 62

Table 4: Fixed point multiplication with off-line precomputa-
tion according to Lim and Lee in terms of expected point ad-
ditions (A) and doublings (D). The parameters w and v are
chosen to obtain a good trade off between total complexity and
complexity in the evaluation phase for 256-bit curves.

algorithm complexity formula #precomp. points

left-to-right binary λ(e)
2 A λ(e)

Windowing (2w +
⌈
λ(e)
w

⌉
− 3)A

⌈
λ(e)
w

⌉

Windowing NAF ( 2w+1

3 +
⌈
λ(e)+1
w

⌉
− 2)A

⌈
λ(e)+1
w

⌉

Lim-Lee precomp:
v(2w−1−1)A+(λ(e)− λ(e)

wv )D
(2w − 1) · v

main: λ(e)w A + (
λ(e)
wv − 1)D

Table 5: Complexity evaluation formulas of algorithms with
off-line precomputation [12, 13]

same length and to process them parallelly as different exponents
comparable to multiple point multiplication with shorter exponents.
An additional parameter v specifies how the different exponents are
further partitioned and can also be seen as the number of lookup
tables containing the precomputed points [12].

In cases with no off-line precomputation the method by Lim and
Lee can nearly compete with the window NAF methods. In cases
with off-line precomputation the method by Lim and Lee performs
significantly better than the window NAF methods.

3.2 Review of Basic Elliptic Curve Multiple
Point Multiplication Techniques

There are several methods available [12] which evaluate product
sums k ·P+ l ·Qmuch more efficient than carrying out the individ-
ual multiplications sequentially and add the results. The complex-
ity and the number of stored points for different approaches can be
seen in Table 6. The respective complexity formulas are given in
Table 7.

While in the first three algorithms addition and doubling opera-
tions are done simultaneously, interleaving only does the doubling
simultaneously. In our case the latter has some advantages. Firstly,
the precomputed points rely on the points P and Q only. This
allows storing precomputed points for further use. Secondly, the
method allows for exponents with different lengths. Both is useful
in our PACE scenario.

algorithm parameter choices complexity #precomp.
points

Simultaneous mult. point w = 2 128A+ 256D 15

Simultaneous slid. window w = 2 118A+ 256D 12

Simultaneous Joint Sparse
Form (JSF)

− 129A+ 255D 3

w-NAF Interleaving
λ(e1) = λ(e2) = 256

w1 = w2 = 5 99A+ 258D 16

w-NAF Interleaving
λ(e1) = 256, λ(e2) = 128

w1 = w2 = 5 78A+ 258D 16

Table 6: Multiple point multiplication in terms of expected
point additions (A) and doublings (D). The window parameters
w are chosen to be optimal for 256-bit curves.

algorithm complexity formula stored points

Simultaneous mult. point (3·22(w−1)−2w−1−1+
22w−1

22w

⌈
λ(e)
w

⌉
− 1)A +

(22(w−1) − 2w−1 +

(
⌈
λ(e)
w

⌉
− 1)w)D

22w − 1

Simultaneous slid. window (3·22(w−1)−2w−1−1+
λ(e)
w+1/3

)A + (22(w−1) −

2w−1+(
⌈
λ(e)
w

⌉
−1)w)D

22w − 22(w−1)

Simultaneous (JSF) (1+
λ(e)
2 )A+(λ(e)−1)D 3

w-NAF Interleaving (
∑
j(2

wj−2 − 1) +∑
j

λ(ej)

wj+1 )A +

(|j : wj > 2|+
maxjλ(ej))D

∑
j(2

wj−2)

Table 7: Complexity evaluation formulas of multiple point mul-
tiplication algorithms [12]

4. OPTIMIZED PACE
In this section we discuss the most promising optimizations for a

PACE implementation on cell phones. The stated amounts of ADD
and DBL are derived from the findings from Section 3 and express
the average case. The proposed optimizations all lead to very sim-
ilar theoretic execution times. Which one is the best in practice
seems to depend on the actual hardware and the respective environ-
mental circumstances. As we have seen in Section 3, storage space
for points is not an issue on modern mobile devices, and is there-
fore not considered here. Likewise the time to load these points can
be assumed to be negligible.

Following the PACE specification (cf. Figure 1) the PCD
conducts the EC computations shown in Equations (1) to (5).
Counting the PCD’s EC computations in this notation leads to a
total of 1 ADD and 5 MULT.

X = x ·G (1)
H = x · Y (2)
G′ = s ·G+H (3)

P̃KPCD = S̃KPCD ·G′ (4)

K = S̃KPCD · P̃KPICC (5)



4.1 Rearranging Equations
When rearranging the equations we have to regard the following

facts: X must be sent to the PICC in order to receive Y , and there-
fore it must be computed before H , G′, P̃KPCD and K. P̃KPCD

must be sent to the PICC in order to receive P̃KPICC and there-
fore it must be computed before K. In addition to Equation (3), G′

is needed in the last PACE step (j), because it is part of the input
for the computation of TPCD . Thus, G′ should be a result or be
computable from the result without increasing the overall compu-
tational cost. We consider the following possibilities for merging
the equations.

α: Standard Interleaving.
One possible optimization is to merge Equations (2) and (3) as

shown in Equation (6) to compute G′ using interleaved multipli-
cation. X , P̃KPCD, and K are computed as shown in Equations
(1), (4), and (5). This leads to an overall computation cost of 3
MULT and 1 PSUM. Using the best available algorithm and pa-
rameters, w-NAF Interleaving with w = 5, PSUM needs 78 ADD
and 258 DBL (cf. Table 6). This is a vast improvement compared
to 2 MULT evaluated as sequential single point w-NAF multiplica-
tions, which sum up to 78 ADD and 386 DBL (according to Table
2). A possible shortcoming is that s, which is only half the length
of x, is forced into a scalar multiplication of the dimension of the
size of x.

G′ = s ·G+ x · Y (6)

β: Short Scalar Interleaving.
The shortcoming of the above Equation (6) regarding the inter-

leaved multiplication with s and x may be countered using the fol-
lowing trick: We know that the size of s is half the size of x. We
break the pair (x, Y ) into two pairs (x1, Y1) and (x2, Y2) as is
done when using the Lim-Lee method. The scalars x1, x2, and s
now have the same size and the pair (s,G) can be added as third
summand to the pairs (x1, Y1) and (x2, Y2) resulting in a standard
interleaved multiplication with three summands as shown in Equa-
tion (7). As with Equation (6), X , P̃KPCD, and K are computed
as shown in Equations (1), (4), and (5). This leads to an overall
computation cost of 3 MULT and 1 PSUM where the scalars in the
PSUM are half the size of those of the PSUM of Equation (6). Us-
ingw-NAF Interleaving withw = 5 PSUM needs 85 ADD and 131
DBL according to Table 7 and additionally 128 DBL to prepare Y2.
In total this is nearly the same as the PSUM costs resulting from
Equation (6) and thus, is also a vast improvement compared to the
not optimized version.

G′ = s ·G+ x1 · Y1 + x2 · Y2 (7)

γ: Inversion.
A third possibility is to merge Equations (2), (3), and (4) as

shown in Equation (8) to compute P̃KPCD using interleaved mul-
tiplication. G′ then has to be computed by a scalar multiplication
with an inverse as shown in Equation (9). X and K are computed
as shown in Equations (1) and (5). This also leads to an overall
computation cost of 3 MULT and 1 PSUM. w-NAF Interleaving
leads to a cost of 99 ADD and 258 DBL (see Table 6). The nec-
essary inversion and multiplications of scalars modulo the order r
of the elliptic curve are neglectable in comparison to the operations
on the points. A possible shortcoming is that the optimization po-
tential of having an s of half the size of all other involved scalars is
given away by multiplying it with a full size scalar. A possible ad-

vantage of this approach is that the computation ofG′, which is not
needed again until the last step of PACE is reached, can be delayed
until then.

P̃KPCD = (S̃KPCD · s) ·G+ (S̃KPCD · x) · Y (8)

G′ = (S̃K
−1

PCD mod r) · P̃KPCD (9)

δ: Splitted Inversion.
An also promising possibility to calculate P̃KPCD is to reuse

the precalculated points of G (see also Section 4.3) and evaluate
Equation (10) with the Lim-Lee method. Another advantage of
this method is the possibility to start the calculation of Equation
(10) right after evaluating the first equation of the PACE algorithm
(cf. Figure 1). Assumed the precomputed points or Lim-Lee multi-
plication are available, the evaluation of Equation (10) leads to 51
ADD and 25 DBL (cf. Table 4). The evaluation of Equation (11)
results to 50 Add and 257 DBL (cf. Table 1). In total the Equations
(10) to (12) that replace the PSUM in approach γ lead to 102 ADD
and 282 DBL.

P̃K1 = (S̃KPCD · s) ·G (10)

P̃K2 = (S̃KPCD · x) · Y (11)

P̃KPCD = P̃K1 + P̃K2 (12)

G′ = (S̃K
−1

PCD mod r) · P̃KPCD (13)

4.2 Tweaked Implementation
As seen above significant improvements are possible by apply-

ing well chosen multiplication algorithms and by rearranging the
equations to be solved. However, there are possibilities for im-
provement concerning the implementation itself. In the following
we consider possibilities to speed up the protocol execution taking
into account at which points dedicated results have to be available
and by avoiding overhead due to implementation techniques. Note
that the optimizations are presented in a Java ME specific way, but
can be applied to other languages analogously.

Reorganization.
Another possibility to speed up the calculations is the reorgani-

zation of their order. We present two different kinds of reorganiza-
tions.

One possibility is to put some calculations at the beginning of
the protocol before the initial contact with the eID card. To do so
we need the domain-parameters of the used eID card saved on our
device. These parameters can be stored at the first contact and can
be used henceforward. The generation of the private keys x and
S̃KPCD as well as the computation of the first ephemeral key X
(Equation (1)) could be done before actually starting the protocol.
Additionally multiples of the base-point G could be stored in the
NVM and later reused within the point multiplications. However,
this is currently not supported by the existing Java ME-libraries.

Another kind of reorganization regards the scheduling of the
tasks and calculations during the protocol. Using threads for
communication with the eID card allows us to use the time waiting
for an answer from the card or the user for further calculations.
The decryption of s can be threaded for instance, since the result
will be required later in step (e) (cf. Figure 1).



Streamlining.
To obtain even more performance improvement we avoid

heavy Java objects whenever possible. Instead, most values are
represented by basic data structures to avoid the expensive object
creation and handling which is particularly important on resource
constrained environments such as mobile phones.

4.3 Multiplication Algorithms
In the following three paragraphs we describe how to speed up

the 5 necessary point multiplications from Equations (1) and (4) to
(13) using the findings from Section 3 and 4.1.

Equation (1).
In Section 4.1 we saw that Equation (1) has to be solved before

all other equations. With the random number x and the fix base-
point G (that can be permanently stored after the first contact with
the eID card) the Lim-Lee multiplication algorithm performs best
according to Table 4. This is quite clear as the values precomputed
during the Lim-Lee algorithm can be stored permanently on the
mobile phone and can be reused to speed up the calculation. Ther-
fore we choose Lim-Lee multiplication to evaluate Equation (1)
X = x ·G. The computation can be started in a low priority thread
before the PIN is entered or even before the mobile device has con-
tact to the eID card.

Equations (4) & (6) / (4) & (7) / (8) & (9) / (10)-(13).
For the calculation ofG′ and S̃KPCD we have different possibil-

ities according to the rearranged equations explained in Section 4.1.
For the calculations of the product-sum of Equation (6) or alterna-
tively Equation (7) we use interleaving which performs best with
Y randomly chosen every session (cf. Table 6). As G′ is different
in each session the additional point multiplication with S̃KPCD in
Equation (4) is done with a simple w-NAF multiplication (cf. Table
1). Alternatively, P̃KPCD could be implemented using Equation
(8) or (12). The evaluation of the product-sum of Equation (8) is
implemented using an interleaving multiplication algorithm again
based on the performance calculations in Table 6. While Equation
(12) is a simple addition Equation (10) is implemented using a Lim-
Lee multiplication and Equation (11) using a simple w-NAF multi-
plication. The necessary additional calculation ofG′ with Equation
(9) resp. (13) is done with a w-NAF multiplication again. Here we
implement all four variants α− δ to compare them with each other
as the theoretical results can not decide exactly which one is the
best.

Equation (5).
Since P̃KPICC changes every session, off-line precomputations

and permanent storage of precomputed points are not possible for
the point multiplication from Equation (5). According to Table 1
the w-NAF algorithm performs best in that case and therefore is
chosen for the calculation.

5. IMPLEMENTATION
We implement the PACE protocol as a Java ME application and

test it on the mobile phone Nokia 62123. The connection between
the PICC and the PCD (mobile phone) is enabled by the NFC in-
terface and the data transmission proceeds by using Application
Protocol Data Units (APDU) specified in ISO/IEC 7816 [20] and

3Currently (Dec. 2010) the Nokia 6212 is the only NFC-enabled
cell phone available in Germany.

Bouncy Castle FlexiProvider
Details PCD Total PCD Total PICC

1 424 676 274 530 256
2 459 1266 597 1261 134
b D(Kπ , z) 19 1396 253 1631 98
c x ·G 5667 7724 968 3346 731
d x · Y 5582 19006 797 5053
e s ·G 4819 23851 244 5307

(d) + (e) 19 1
f S̃KPCD ·G′ 5600 35450 889 7644 535
i S̃KPCD · P̃KPICC 5564 41026 1666 9333
j TPCD 42 41160 22 9458 87

Total [ms] 28195 41160 5718 9458 1841

Table 8: Reference PACE performance test on Nokia 6212

Bouncy Castle FlexiProvider
Details PCD Total PCD Total PICC

1 EF.CardAccess 120 381 100 390 290
2 MSE:Set AT 50 581 100 651 161
b D(Kπ , z) 10 661 50 761 60
c x ·G 171 1172 70 1181 350
d x · Y 20 1212 10 1211
e s ·G 20 1232 10 1221

(d) + (e) 0 0 0
f S̃KPCD ·G′ 30 1553 20 1512 261
i S̃KPCD · P̃KPICC 20 1562 40
j TPCD 10 1663 0 1622 60

Total [ms] 451 1663 400 1622 1182

Table 9: Reference PACE performance test on desktop PC

TR-03110 [11]. For the required cryptographic functions, which
are out of scope of the Java ME platform, we use external crypto-
graphic libraries such as FlexiProvider4 and Bouncy Castle5. These
two currently seem to be the only available CSPs for elliptic curve
arithmetic on mobile devices. Other providers like IAIK6 can-
not perform elliptic curve cryptography in a mobile environment
or are just out of date (e.g. Cryptix7). The CSPs are used for
the key derivation, decryption of the nonce s, the map function
(Generic Mapping), and the key generation. The domain parame-
ters D (stored in the file EF.CardAccess on the PICC) include a set
of Security Infos [11], which defines the ECC domain parameters,
the common base pointG, and the supported encryption algorithm.
The data is encoded in Abstract Syntax Notation One (ASN.1) data
structures as specified in [11]. Bouncy Castle includes an ASN.1
parser to decode the data structures, the FlexiProvider uses the
CoDec8 library developed by Fraunhofer IGD.

5.1 Reference Tests
In order to have reference timings, we first implemented the

PACE protocol in a straightforward manner without any improve-
ments or optimizations described in Section 4. The measurements
of the respective performance tests are depicted in Table 8. Step (1)
shows the values for selecting and reading the file EF.CardAccess
(Select File and Read Binary command [20]), and decoding the
ASN.1 data structures. Step (2) shows the initialization of PACE
by using the MSE:Set AT command [11]. Steps (b) to (j) corre-
spond to the steps depicted in Figure 1. The key derivation in the
steps (a), (h) and (i) are simple hash computations. Therefore, their

4http://www.flexiprovider.de
5http://www.bouncycastle.org
6http://jce.iaik.tugraz.at
7http://www.cryptix.org
8http://codec.sourceforge.net

http://www.flexiprovider.de
http://www.bouncycastle.org
http://jce.iaik.tugraz.at
http://www.cryptix.org
http://codec.sourceforge.net


Function / Provider FlexiProvider [ms] BouncyCastle [ms]
Mod 0.093 0.0306
Multiply 0.1166 0.1143
Subtract 0.0261 0.0615
Add 0.0403 0.0406
ModInverse 4.7 20.77
ModPow (squared) 1.54 3.4
ModAdd 0.1591 0.077
ModMult 0.3976 2.9589
Point Mult 1051.3 7081.2
Point Addition 3.8 18.7
Point Doubling 2.3 23.8

Table 10: Performance tests on Nokia 6212 (256 bit numbers)

cost can be disregarded and we skip these steps in Table 8 and 9.
The value zero indicates that the operation takes less than one mil-
lisecond. The values for the PICC include the transmission time of
the APDUs in both directions. The column "Total" also includes
values, which were caused by additional operations such as creat-
ing Java objects, event handling and control flow statements. The
timings were measured immediately before sending an APDU to
the PICC and immediately after receiving the response from the
PICC.

The measured values show that the point multiplications are ex-
pensive operations. The FlexiProvider performs the elliptic curve
computations significantly faster than the Bouncy Castle (cf. Ta-
ble 8). One reason for this is that the FlexiProvider uses the more
sophisticated exponentiation technique developed in [6] by default
while the Bouncy Castle uses a simple Square & Multiply tech-
nique.

Additionally, we perform run-time tests on a desktop PC (Intel
Core 2 Quad Q8300 2.5GHz) with an attached smart card reader
(SCM SDI010 [33]). Information about the hardware configuration
of the Nokia 6212 is not publicly available. The values in Table 9
for the performance tests on the desktop PC are quite similar for
both CSPs and the major part of the run-time in this scenario is
caused by the PICC (approximately 70%). On average the PICC
needs about 1200 milliseconds in total, which can be characterized
as a lower bound of the overall run-time.

Before implementing and testing the optimized PACE protocol,
containing the optimizations stated in Section 4, we analyze the
implementations of the large number arithmetic in both CSPs,
because they determine the performance of the elliptic curve
arithmetic. As shown in Table 10 the implementation of the
BigInteger class (for large number arithmetic) in FlexiProvider is
significantly faster for the important functions ModInverse and
ModMult than the respective implementation in Bouncy Castle.
The performance of the elliptic curve arithmetic is also much
better in the FlexiProvider than in Bouncy Castle.

5.2 Optimized Implementation
Since the performance measurements revealed that the perfor-

mance of the FlexiProvider is much better than the performance
of Bouncy Castle (cf. Section 5.1) we use the FlexiProvider for
the implementation of the optimized PACE protocol with the op-
timizations described in Section 4. It has an ratio of about 12:9
(ADD:DBL).

The PACE protocol is implemented as depicted in Algorithm 2
using the precalculations from Algorithm 1. Algorithm 2 shows the
variant α as described in Section 4. The algorithms for the other
variants are straightforward by replacing the functions in lines 5
and 6 accordingly. The function GenPrivKey() generates a uni-

Algorithm 1 Precomputations for the optimized PACE protocol
Input: D {Let D denote the domain parameters including the

basepoint G}
Output: (x, S̃KPCD, X)
1: x← GenPrivKey()
2: S̃KPCD ← GenPrivKey()
3: X ← Multiply_LimLee(x,G) {(1)}
4: return (x, S̃KPCD, X)

Algorithm 2 The optimized PACE protocol
Input: π,D {Let D denote the domain parameters including the

basepoint G}
Output: (KMAC,KENC)
1: z ← getZ()
2: s← D(Kπ, z)
3: sendX(X)
4: Y ← getY()
5: G′ ← Multiply_Interleaving(s, x,G, Y ) {(6)}
6: P̃KPCD ← wNafMult(S̃KPCD, G

′) {(4)}
7: sendX(P̃KPCD)
8: P̃KPICC ← getPK()
9: K ← wNafMult(S̃KPCD, P̃KPICC) {(5)}

10: TPCD ← MAC(KMAC, P̃KPICC)
11: sendT(TPCD)
12: TPICC ← getT()
13: if TPICC == MAC(KMAC, P̃KPCD) then
14: return (KMAC,KENC)
15: else
16: return Error during authentication
17: end if

formly chosen random number smaller than the order r of the el-
liptic curve. Algorithm 1 is started immediately at the application
startup if the the domain parameters are available from a previous
session. If there are no matching domain parameters available on
the device, Algorithm 1 is started after the PIN entry, before Algo-
rithm 2 is started. Equation (1) and the generation of the private
keys are moved forward to Algorithm 1. The next point multipli-
cations from Equation (6) are implemented using an interleaving
algorithm (line 5). The last two multiplications (Equation (4) in
line 6 and Equation (5) in line 9) are implemented using a w-NAF
multiplication method.

There are two states for the protocol execution. The first state is
the initial run of the protocol after the installation of the application.
In this first state no saved points or domain parameters can be used
in the protocol. During the first run these values are stored in the
NVM of the mobile device for future use. In the second state the
domain parameters, the base point G and precomputed points are
already available on the device and can be used during the protocol
execution. Since it can be assumed that the owner of the mobile
phone uses the application mostly with his own identity card, this
second state should cover most of the protocol executions.

5.3 Performance
The runtimes of the efficient implementation are depicted in Ta-

ble 11. In contrast to the performance measurements of the refer-
ence implementation (cf. Table 8) we cannot measure every single
step, as they are strongly interwoven into each other through thread-
ing and there are is no API for Java ME to measure thread timings.
The measurements distinguish between the two states shown in the



Variant State 1 [ms] State 2 [ms]
α 7580 6280
β9 7330 6310
γ 7530 6360
δ 9034 7775

Table 11: Optimized PACE performance tests on Nokia 6212

two columns. The first state can’t make use of any stored values
(precomputed points or domain parameters). The second one uses
the stored values to precalculate the result of Equation (1). In vari-
ant δ Equation (10) also uses these stored values. The rows show
the four different possibilities of rearranging the equations as pre-
sented in Section 4.1. Except variant δ, the results are very similar
so that the fastest variant may vary depending on the used hardware
and operating system. Although variant δ does not perform as well
as the others on the our device, it has some promising approaches
and might be of use in future generations of mobile devices.

6. POTENTIAL SIDE CHANNEL VUL-
NERABILITIES OF PACE

Elliptic curve operations are known to be vulnerable to side
channel attacks if no appropriate countermeasures are taken. The
basic problems are power analysis attacks [25] and timing attacks
[24]. In this section, we briefly address the side channel security is-
sues of the PACE protocol on the side of the PCD given Algorithms
2 and 1 are used. First, we identify potential targets of such attacks
against the elliptic curve algorithms.

There are three scalar values that are used for point multiplica-
tion in one run of the PACE protocol: x, s, and S̃KPICC. All of
these values are ephemeral, thus only a single protocol run is avail-
able to an attacker to recover these values. If an attacker aims at
gaining the encryption and MAC keys derived in the course of the
protocol, he has to find all three scalar values. While s is only used
in one scalar multiplication, the other two are used in two scalar
multiplications each. Since differential analysis are based on far
more recordings than this, only simple analysis can be used to re-
cover these values.

This basically rules out timing attacks, since they demand dif-
ferential analysis by nature. One exception is an attack recovering
the hamming weight of the scalar against an unprotected binary
method: here the running time is linearly dependent on the ham-
ming weight of the scalar. However, the hamming weight will in
general not suffice to enable actual recovery of the secret scalar
values.

Concerning power analysis attacks, it should be pointed out that
a scenario, where the attacker has actual access to CPU’s power
supply is not realistic. However, electro-magnetic radiation (EM)
attacks [1] are similar in nature. Thus, it seems advisable to include
power analysis countermeasures in order to prevent EM attacks.
Note that in the case of a binary method for the elliptic curve scalar
multiplication, even simple EM analysis, i.e. an attack based on
a single recorded trace, is feasible. If the attacker can distinguish
the doubling and the addition operation, he can read the bits of the
secret scalar from the trace.

It is important not only to address the scalar multiplication, but
also the exponent recoding operations that are necessary when ap-

9As no available mobile Java CSP supports this directly, x1, x2,
Y1 and Y2 are generated in a preparation step and then passed to
a standard interleaving multiplication method together with s, G,
and Y .

plying NAF representations. Such an attack is presented in [32].
The symmetric operations involving secrets have to be secured

as well. Specifically, the derivation of the cipher key Kπ and the
decryption in step 2 of algorithm 2 must be secure against differ-
ential analysis, since they involve the same secret values whenever
a specific eID is used. The MAC and encryption operations per-
formed using KMAC and KENC after the PACE protocol also need
to be secure with respect to differential analysis to a certain extend,
since they will be used for a complete session.

7. FUTURE WORK
The differentiation between the two states of the optimized

PACE protocol is only necessary due to the fact that the Nokia
6212 only recognizes the eID card when it is lying on the top of
the cellphone. The reason for this is the location of the antenna
and its field intensity. Most likely newer devices don’t have these
disadvantages. Thus, it would be possible for the user to enter the
PIN while the eID card has contact to the mobile phone. Then the
phone would be able to decide whether it knows the eID card or
not and load the necessary domain parameters to run Algorithm 1.
Thereby the runtimes for the two states would be equal so that the
differentiation between the two states becomes obsolete.

The mobile device could, besides saving the base point and its
multiples for Lim-Lee, also save multiples of that point generated
during the evaluation of Equation (1) for further use. This clearly
would save computation time. However, the available mobile cryp-
tographic libraries do not offer the possibility to use the stored
points. Thus, this optimization is left for future work including re-
spective modifications of the applied cryptographic library. Saving
precomputed values for the w-NAF multiplication is also possible
but does not lead to significant performance improvements since
the computation for a window size of 5 only includes 3 ADD and 1
DBL, which is negligible.

The method used for the second variant in Section 4.1 can be
generalized to a method for various ei, Pi pairs with different sizes
of the ei. We call this Interleaved-Lim-Lee-Combining (ILLC).
Here, each ei, Pi pair where the scalar exceeds the determined size
is broken into ej , Pj pairs with the correct scalar size. For each
ei, Pi pair where the scalar ei is smaller than the determined size
the scalar ei is padded to the correct size. To our knowledge none
of the available cryptographic libraries offer this method, it seems
not even to exist in literature. Hence, we will investigate and im-
plement ILLC ourselves.

There are more possible optimizations which we did not apply,
as no available mobile provider supported their implementation.
Examples involve using Montgomery Multiplication [28], efficient
point triplication [5] and quintuplication [27]. While we limited
ourselves in the work at hand to PACE optimizations realizable
without modifications to existing mobile providers, the next round
of PACE optimizations will include all mentioned methods which
require such modifications.

Another, rather adventurous optimization deliberately violates
the PACE protocol. Instead of choosing x and S̃KPCD uniformly
at random, the PCD could set x = s and S̃KPCD ≡ s−1 mod r,
where r is the order of the used elliptic curve. By this, computing
P̃KPCD is reduced to compute G + Y which annihilates 2 ran-
dom number generations and 2 MULT. Unfortunately, this allows
an attacker eavesdropping on the communication to reconstruct the
PIN. It is sufficient to once eavesdrop on a tuple D, z,X sent by
the PCD. The attacker then can systematically try each possible
PIN to decrypt z and verify it by checking whether X = s · G
holds. Hence, this optimization is not suitable for the eID card sce-



nario which is in the scope of this work. But it might be suitable for
other scenarios, e.g. where the communication between the PICC
and the PCD is secured against eavesdropping by other means.

8. CONCLUSION
This paper presented an efficient Java ME implementation of the

PACE protocol for mobile devices. The review of the implemen-
tation of the relevant algorithms and Java ME CSPs showed that
there are significant performance differences. The following inves-
tigation of the possible optimizations to a straightforward PACE
version revealed different possibilities which all result in a similar
theoretical speedup without changing existing CSPs. The presented
benchmarks of the different possible optimizations were the basis
for choosing concrete optimizations. The benchmarks revealed a
significant speedup in comparison to the not optimized version. A
discussion of potential side channel attacks on the optimized im-
plementation rounded the investigation up. The future work discus-
sion showed that there is more optimization potential when making
changes to the existing cryptographic libraries. All in all we suc-
ceeded in providing a platform independent efficient mobile PACE
implementation, but also showed where and how even more effi-
ciency could be gained.
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