
Blind Password Registration for Two-Server
Password Authenticated Key Exchange and

Secret Sharing Protocols

Franziskus Kiefer1 and Mark Manulis2

1 Mozilla
Berlin, Germany

mail@franziskuskiefer.de
2 Surrey Center for Cyber Security

Department of Computer Science, University of Surrey, UK
mark@manulis.eu

Abstract. Many organisations enforce policies on the length and for-
mation of passwords to encourage selection of strong passwords and pro-
tect their multi-user systems. For Two-Server Password Authenticated
Key Exchange (2PAKE) and Two-Server Password Authenticated Secret
Sharing (2PASS) protocols, where the password chosen by the client is
secretly shared between the two servers, the initial remote registration
of policy-compliant passwords represents a major problem because none
of the servers is supposed to know the password in clear.
We solve this problem by introducing Two-Server Blind Password Reg-
istration (2BPR) protocols that can be executed between a client and
the two servers as part of the remote registration procedure.
2BPR protocols guarantee that secret shares sent to the servers belong
to a password that matches their combined password policy and that
the plain password remains hidden from any attacker that is in control
of at most one server. We propose a security model for 2BPR protocols
capturing the requirements of policy compliance for client passwords and
their blindness against the servers. Our model extends the adversarial
setting of 2PAKE/2PASS protocols to the registration phase and hence
closes the gap in the formal treatment of such protocols. We construct
an efficient 2BPR protocol for ASCII-based password policies, prove its
security in the standard model, give a proof of concept implementation,
and discuss its performance.

1 Introduction

Password policies set by organisations aim to rule out potentially “weak” pass-
words and by this contribute to the protection of multi-user systems. In tradi-
tional web-based password authentication mechanisms a password policy chosen
by the server is typically enforced during the password registration phase —
the corresponding compliance check is performed either by the client or on the
server side, depending on the available trust assumptions. If the client is not

1

trusted with the selection of a policy-compliant password, then the compliance
check must be performed by the server. The most common approach in this
case is to transmit chosen passwords over a secure channel, e.g., TLS channel,
to the server that performs the check on the received (plain) password. The
drawback of this approach, however, is that the client’s password is disclosed
to the server. Although this approach represents a common practice nowadays,
its main drawback is the necessity to trust the server to process and store the
received password in a protected way, e.g., by hashing it. This trust assumption
often does not hold in practice as evident from the frequent server-compromise
attacks based on which plain password databases have been disclosed [1,2,3,4].

Considering that “password-cracking tools” such as Hashcat [5] and John the
Ripper [6] are very efficient, it is safe to assume that leaked password hashes are
not safer than un-hashed ones when compromised by an attacker [7,8,9,10]. The
notion of threshold and two-server password authenticated key-exchange [11,12]
has been proposed where the password is not stored on a single server but split
between a number of servers such that leakage of a password database on a non-
qualified subset does not reveal the password. The two-server setting is regarded
as more practical (in comparison to a more general threshold setting) given that
if one server is compromised a notification to change the password can be sent
out to the clients. Two-server password authenticated key-exchange protocols
(2PAKE) [13,14,15] split the client’s password pw into two shares s1 and s2 such
that each share is stored on a distinct server. During the authentication phase
both servers collaborate in order to authenticate the client. Yet, no server alone
is supposed to learn the plain password. A second, more recent development in
two-server (and threshold) password protocols is password authenticated secret
sharing (PASS) [16,17,18] where a client stores shares of a (high-entropy) secret
key on a number of servers and uses a (low-entropy) password to authenticate
the retrieval process.

Registering password shares for 2PAKE/2PASS protocols however makes it
impossible for the servers to verify their password policies upon registration un-
less the password is transferred to each of them in plain. This however, would
imply that the client trusts both servers to securely handle its password, which
contradicts the purpose and trust relationships of multi-server protocols. The use
of two-server password protocols in a remote authentication setting, therefore,
requires a suitable password registration procedure in which none of the servers
would receive information enabling it (or an attacker in control of the server)
to deliberately or inadvertently recover the client’s password. This registration
procedure must further allow for policy compliance checks to be performed by
the servers since secret sharing per se does not protect against “weak” pass-
words. A trivial approach of sending s1 and s2 to the corresponding servers over
secure channels is not helpful here since it is not clear how the two servers can
perform the required compliance check. To alleviate a similar problem in the
verifier-based PAKE setting, Kiefer and Manulis [19] introduced the concept of
zero-knowledge password policy checks (ZKPPC), where upon registration the
client can prove to the server the compliance of its chosen password with re-

2

spect to the server’s policy without disclosing the actual password. In this work,
we propose the concept of blind password registration for two-server password
protocols and thus show how to realise secure registration of password shares
in a way that protects against at most one malicious server (if both servers are
malicious, the attacker obviously gets the password), yet allows both servers to
check password compliance against their mutual password policy. It bases on
techniques introduced in the framework for ZKPPC from [19] but uses a se-
curity model for the entire blind setup process and is based in the two-server
setting which brings additional challenges. Two-server Blind Password Registra-
tion (2BPR) is not vulnerable to offline dictionary attacks as long as one server
remains honest. This is in contrast to the single-server setting where an attacker
is always able to perform offline dictionary attacks on password verifiers after
compromising a server. Our main contribution is the 2BPR security model and
the corresponding protocol for secure registration of 2PAKE/2PASS passwords.
We show how secure distribution of password shares can be combined with an
appropriate policy-compliance proof for the chosen password in a way that does
not reveal the password and can still be verified by both servers. Our 2BPR pro-
tocol can be used to enforce policies over the alphabet of all 94 printable ASCII
characters3, including typical requirements on password length and character
types.

2 Preliminaries

In this section we recall the underlying primitives and concepts that are used in
the construction of our two-server blind password registration protocol.

2.1 Commitments

Let C = (CSetup, Com) denote a commitment scheme and C ← Com(x; r) a com-
mitment on x using randomness r, with CSetup generating parameters for C. A
commitment scheme C = (CSetup, Com) is efficient if CSetup(λ) and (C, d) ←
Com(x; r) are computable in polynomial time, complete if Com(d) = (C, d) for
(C, d)← Com(x; r), and secure if it is

– Binding: For all PPT adversaries A there exists a negligible function εbi(·)
such that for all (x, x′, r, r′, C)← A: Pr[x 6= x′∧(C, d) = Com(x; r)∧(C, d′) =
Com(x′; r′)] ≤ εbi(λ),

– Hiding: For all PPT adversaries A there exists a negligible function εhi(·)
such that for all x0, x1 with |x0| = |x1| and b ∈R {0, 1}, (C, d) ← Com(xb; r)
and b′ ← A(C, x1, x2): Pr[b = b′] ≤ 1/2 + εhi(λ).

3 Note that using other encodings such as UTF-8 is possible but might influence
performance due to a different size of possible characters.

3

Pedersen commitments [20] We use perfectly hiding, computationally bind-
ing, homomorphic Pedersen commitments [20] defined as follows. Let CP =
(CSetup, Com) with (g, h, q, λ) ← CSetup(λ) and C ← Com = (x; r) = gxhr

denote the Pedersen commitment scheme where g and h are generators of a
cyclic group G of prime order q with bit-length in the security parameter λ
and the discrete logarithm of h with respect to base g is not known. Pedersen
commitments are additively homomorph, i.e. for all (Ci, di) ← Com(xi; ri) for
i ∈ 0, . . . ,m it holds that

∏m
i=0 Ci = Com(

∑m
i=0 xi;

∑m
i=0 ri).

Trapdoor commitments In order to build zero-knowledge proofs of knowl-
edge with malicious verifiers we require a trapdoor commitment scheme, which
allows a party knowing the correct trapdoor to open a commitment to any value.
Fortunately, Pedersen commitments are trapdoor commitments as they can be
opened to any element using the discrete logarithm logg(h) as trapdoor.

2.2 Zero Knowledge Proofs

A zero-knowledge proof is executed between a prover and a verifier, proving that
a word x is in a language L, using a witness w proving so. An interactive protocol
ZKP for a language L between prover P and verifier V is a zero knowledge proof
if the following holds:

– Completeness: If x ∈ L, V accepts if P holds a witness proving so.
– Soundness: For every malicious prover P ∗(x) with x ∈ L that the probability

of making V accept is negligible.
– Zero-Knowledge: If x ∈ L, then there exists an efficient simulator Sim that

on input of x is able to generate a view, indistinguishable from the view of
a malicious verifier V ∗.

A zero-knowledge proof of knowledge ZKPoK is a zero-knowledge proof with the
following special soundness definition:

– Soundness: There exists an efficient knowledge extractor Ext that can extract
a witness from any malicious prover P ∗(x) with x ∈ L that has non-negligible
probability of making V accept.

We use the following committed Σ-protocol to ensure extractability (ZKPoK)
and simulatability when interacting with a malicious verifier [21,22]. Let P1(x,w, r)
and P2(x,w, r, c) denote the two prover steps of a Σ-protocol and H : {0, 1}∗ 7→
Zq a collision-resistant hash function. A committed Σ-protocol based on Peder-
sen commitments is then given by the following steps:

– The prover computesm1 ← P1(x,w, r), Co← Com(H(x,m1); r1) = gH(x,m1)hr1 ,
and sends Co to the verifier.

– The verifier picks random challenge Ch = c and returns it to the prover.
– The prover computesm2 ← P2(x, w, r, c), Rs1 ← Com(H(m2); r2) = gH(m2)hr2 ,

and sends Rs to the verifier.

4

– Further, the prover opens the commitments Co and Rs1 by sending Rs2 =
(x,m1,m2, r1, r2) to the verifier.

– The verifier accepts if both commitments are valid and if the verification of
the Σ-protocol (x,m1, c,m2) is successful.

We note that in the malicious verifier setting, this type of protocol is a concurrent
zero-knowledge proof since its security proof does not require rewinding [21,22].
We observe that all zero-knowledge protocols used in this work are committed Σ-
protocols those security relies on the hardness of the discrete logarithm problem
in G and the collision resistance property of H.

Passwords We adopt the reversible, structure-preserving encoding scheme from
[19] that (uniquely) maps strings of printable ASCII characters to integers. We
use pw for the ASCII password string, ci = pw[i] for the i-th ASCII character
in pw, and integer π for the encoded password string. The encoding proceeds
as follows: π ← PWDtoINT(pw) =

∑n−1
i=0 b

i(ASCII(ci) − 32) for the password
string pw and πi ← CHRtoINT(ci) = ASCII(ci)− 32 for the i-th unshifted ASCII
character in pw. Note that n denotes the length of pw and b ∈ N is used as shift
base. (We refer to [19] for a discussion on the shift base b. Note, however, that
shift base related attacks on the password verifier from [19] are not possible in
our two-server setting.) The ASCII function returns the decimal ASCII code of
a character.

Remark 1. While password distribution is important for the security of pass-
word registration protocols for Verifier-based PAKE [19], the role of password
distribution in the two-server setting is different. Since each server stores only a
random-looking password share, offline dictionary attacks from an attacker who
compromises at most one of the two servers become infeasible. Security of 2BPR
protocols defined in this work is therefore independent of client passwords. Note
however that the password strength still continues to play an important role for
the security of 2PAKE/2PASS protocols, where it influences the probability of
successful online dictionary attacks.

Password Sharing We focus on the additive password sharing of client pass-
words, i.e. π = s0 + s1 mod q over a prime-order group Gq. Such sharing has
been used in various 2PAKE protocols, including [15,23,24,25]. To be used in
combination with 2PASS protocols such as [17] one can define the password as
gπ and thus adopts the multiplicative sharing gπ = gs0gs1 . Password shares are
created as s0 ∈R Zq and s1 = π−s0 mod q. We remark that other sharing options
such as XOR have been used in literature] [13,14] but are not supported by our
2BPR protocol.

Password Policies We represent password policies as in [19], i.e. a password
policy f = (R,nmin) consists of a simplified regular expression R that defines

5

ASCII subsets that must be present in the chosen password string and the min-
imum length nmin of the password string. The expression R is defined over the
four ASCII subsets Σ = {d, u, l, s} with digits d, upper case letters u, lower
case letters l and symbols s, and gives the minimum frequency of a character
from the subset that is necessary to fulfil the policy; for instance, R = ulld
means that policy-conform password strings must contain at least one upper
case letter, two lower case letters and one digit. In the two-server setting, if
each of the servers has its own password policy, i.e. f0 and f1, then registered
passwords would need to comply with the mutual password policy defined as
f = f0 ∩ f1 = (max(R0, R1),max(nmin0, nmin1)), where max(R0, R1) is the regu-
lar expression with the maximum number of characters from each of the subsets
u, l, d, s from R0 and R1. A mutual policy is fulfilled, i.e. f(pw) = true, iff
f0(pw) = true and f1(pw) = true, and not fulfilled, i.e. f(pw) = false, iff
f0(pw) = false or f1(pw) = false. We mainly operate on the integer repre-
sentation π of a password string pw throughout this paper and sometimes write
f(π), which means f(pw) for π ← PWDtoINT(pw). Further note that a character
ci ∈ pw is called significant if this character is necessary to fulfil R and we denote
the corresponding set Rj ∈ R as a significant set for the policy.

Password Dictionaries A password dictionary Df , if not specified otherwise,
is a set of password strings adhering to a given policy f = (R,nmin), i.e. their
length is limited by nmin ≤ |pw| and the required types of characters are identified
by R. We denote the size of a dictionary D by |D|. We omit index f if the policy is
clear from the context. We further define dictionary Df,n holding policy-conform
passwords according to f of length n and will use it throughout the paper. In
order to be able to use the optimal dictionary Df , the client would either have
to prove correctness of password characters that are not necessary for R without
revealing their number (which seems impossible with the approach used in this
paper), or use a fixed password length to hide n in it (which is inefficient). (Note
that we only consider reasonable dictionaries sizes, i.e. |Df,n| > 1.)

3 Two-Server Blind Password Registration

Two-server Blind Password Registration (2BPR) allows a client to register pass-
word shares with two servers for later use in 2PAKE/2PASS protocols and prove
that the shares can be combined to a password that complies with the mutual
password policy of both servers, without disclosing the password. A 2BPR pro-
tocol is executed between client C and two servers S0 with password policy f0
and S1 with password policy f1. C interacts with S0 and S1 in order to distribute
shares of a freshly chosen password string pw and prove its compliance with the
mutual policy, i.e. f0(pw) = true and f1(pw) = true. A 2BPR protocol between
an honest client C and two honest servers S0 and S1 is correct if S0 and S1 ac-
cept their password shares if and only if the client is able to prove the following
statement for f = f0 ∩ f1:

(pw, s0, s1) : PWDtoINT(pw) = s0 + s1 ∧ f(pw) = true. (1)

6

Note that the 2BPR protocol can be used to register new clients or to register
new passwords for existing clients. The following definition formally captures the
functionality of 2BPR protocols.

Definition 1 (Two-Server Blind Password Registration). A 2BPR proto-
col is executed between a client C and two servers S0 and S1, holding a password
policy fb each, such that the servers, when honest, eventually accept password
shares sb of a policy compliant, client chosen password pw iff f(pw) = true for
f = f0 ∩ f1, PWDtoINT(pw) = sb + s1−b and b ∈ {0, 1}.

Definition 1 requires that password shares s0 and s1 can be combined to the
policy-compliant integer password π. The corresponding verification must there-
fore be part of the 2BPR protocol. Otherwise, the client could register password
shares s0 and s1 that can both be combined to a policy compliant password
in the respective proofs with the servers, but combining s0 and s1 might re-
sult in a password that is not policy compliant, i.e. f(s0 + s′) = true and
f(s1 + s′′) = true but f(π) 6= true. This further ensures that servers hold valid
password shares, which is crucial for the security of 2PAKE/2PASS protocols
that should be executed later with these password shares. We assume that the
protocol is initiated by servers (possibly after the client expresses his interest
to register). This allows each server to send its password policy to the client.
We further assume that both servers can communicate with each other over an
authenticated and confidential channel. This communication can either be done
directly between the servers or indirectly using the client to transmit messages.

3.1 Security Model for 2BPR Protocols

2BPR protocols must guarantee that the client knows the sum PWDtoINT(pw)
of the password shares s0 and s1, and that pw fulfils both password policies
f0 and f1 if both servers accept the registration procedure. We translate Eq.
(1) into a game-based security model that captures 2BPR security in form of
two security requirements. The first requirement is called Policy Compliance
(PC) of the registered password. In particular, if both servers are honest while
accepting their password shares in the 2BPR protocol, the combination π of the
shares represents a password compliant with their mutual policy f = f0 ∩ f1,
i.e. f(sb + s1−b) = true. The second requirement relates to the fact that servers
should not learn anything about the registered password and is therefore called
Password Blindness (PB), i.e. a malicious server Sb may only learn whether a
registered password is compliant with the mutual policy and nothing else. We
observe that the blindness property must hold for all possible password policies
and all compliant passwords. PB also implies impossibility of mounting an offline
dictionary attack after observing 2BPR executions or through gaining access to
and controlling at most one of the servers.
Setup and Participants Protocol participants C, S0, S1 with C from the uni-
verse of clients and S0, S1 from the universe of servers have common inputs,
necessary for the execution of the protocol. Instances of protocol participants

7

C or S are denoted Ci, S0,i or S1,i. Protocol participants without specified role
are denoted by P , and Sb and S1−b for unspecified servers. A client can register
one password with any pair of servers from the universe. We use C and Sb as
unique identifiers for the client and servers (e.g. C can be seen as a username
that will be stored by servers alongside with password shares). We say a client
C registers a password share for (C, S1−b) at server Sb and a password share for
(C, Sb) at server S1−b. There can be only at most one (most recent) password
share registered at Sb resp. S1−b for (C, S1−b) resp. (C, Sb) at any given time. A
tuple (C, S1−b, sb) is stored on server Sb and tuple (C, Sb, s1−b) on server S1−b
only if the 2BPR protocol is viewed as successful by the servers.
Oracles A PPT adversary A has access to Setup, Send, Execute and Corrupt
oracles for interaction with the protocol participants.

– Setup(C, S0, S1,pw′) creates new instances of all participants and stores iden-
tifiers of the other parties to each participant. To this end the client receives
the server policies f0 ∩ f1 = f and either chooses a new policy compliant
password pw ∈ Df if pw′ = ⊥ or uses pw = pw′.

– Execute(C, S0, S1) models a passive attack and executes a 2BPR protocol
between new instances of C, S0 and S1. It returns the protocol transcript
and the internal state of all corrupted parties.

– SendC(Ci, Sb,j ,m) sends message m, allegedly from client instance Ci, to
server instance Sb,j for b ∈ {0, 1}. If Ci or Sb,j does not exist, the oracle
aborts. Note that any instance Ci and Sb,j was thus set up with Setup and
therefore has an according partner instance S1−b,j . If all participants exist,
the oracle returns the server’s answer m′ if there exists any. Necessary inter
server communication is performed in SendC queries. If m = ⊥, server Sb,j
returns its first protocol message if it starts the protocol.

– SendS(Sb,i, Cj ,m) sends message m, allegedly from server instance Sb,i for
b ∈ {0, 1}, to client instance Cj . If Sb,i or Cj does not exist, the oracle aborts.
Note that any instance Sb,i and Cj was thus set up with Setup and therefore
has an according partner instance S1−b,i. If all participants exist, the oracle
returns the client’s answerm′ if there exists any. Ifm = ⊥, server Sb,i returns
its first message if he starts the protocol.

– SendSS(Sb,i, S1−b,j ,m) sends message m, from server instance Sb,i for b ∈
{0, 1}, to server instance S1−b,j . If Sb,i or S1−b,j does not exist, the oracle
aborts. Note that any instance Sb,i and S1−b,j was thus set up with Setup. If
all participants exist, the oracle returns the server’s answer m′ if there exists
any.

– Corrupt(Sb) allows the adversary to corrupt a server Sb and retrieve its in-
ternal state, i.e. stored messages and randomness, and the list of stored
password shares (C, S1−b, sb). Sb is marked corrupted.

Note that we allow the adversary to register passwords with servers without re-
quiring existence of a client instance Ci in a successful registration session. This
is because we do not assume authenticated clients, i.e. client identifiers C are
unique but not secret and can therefore be used by the adversary.

8

Policy Compliance This is a natural security property of 2BPR protocols, re-
quiring that registered client passwords comply with the mutual policy f(pw) =
true. The attacker here plays the role of the client trying to register a password
pw that is not policy compliant at two honest servers.

Definition 2 (Policy Compliance). Policy compliance of a 2BPR protocol
holds if for every PPT adversary A with access to Setup and SendC oracles the
probability that two server instances Sb,i and S1−b,j exist after A stopped that
accepted (C, S1−b, sb), (C, Sb, s1−b) respectively, with f(sb + s1−b) = false is
negligible.

Password Blindness This property requires that every password, chosen and
set-up by an honest client must remain hidden from an adversary who may cor-
rupt at most one of the two servers, thus obtaining the internal state and taking
full control over the corrupted server. We model password blindness through a
distinguishing experiment where the attacker, after interacting with the oracles,
outputs a challenge comprising of two passwords (pw0 and pw1), two clients
(C0 and C1), and a pair of servers (S0 and S1). After a random assignment of
passwords to the two clients, the adversary interacts with the oracles again and
has to decide which client used which password in the 2BPR protocol execution.
This is formalised in the following definition.

Definition 3 (Password Blindness). The password blindness property of a
2BPR protocol Π holds if for every PPT adversary A there exists a negligible
function ε(·) such that

AdvPB
Π,A =

∣∣∣∣Pr[ExpPB
Π,A = 1]− 1

2

∣∣∣∣ ≤ ε(λ).

ExpPB
Π,A :
(C0, C1, S0, S1,pw0,pw1)← ASetup,SendS ,SendSS ,Execute,Corrupt

1
check pw0,pw1 ∈ Df0∩f1 , |pw0| = |pw1|, C0, C1 ∈ {C} and S0, S1 ∈ {S}
b′ ← ASetup′,SendS ,SendSS ,Execute,Corrupt(λ,D, {C}, {S})
if S0 or S1 is uncorrupted, return b = b′; otherwise return 0

where the modified oracle Setup′ (in contrast to Setup) picks a random bit b ∈R
{0, 1} and uses pwb as a password for client C0 and pw1−b for C1

4 An Efficient Two-Server BPR Protocol

Before diving into technical details, we give a high-level description of our 2BPR
protocol. We assume that client C selected two servers S0 and S1 to register with.
We also assume the existence of server-authenticated and confidential channels
(e.g. TLS channels [26,27,28]) between C and each Sb, b ∈ {0, 1} as well as
between S0 and S1. These channels prevent active impersonation of any server Sb,

9

b ∈ {0, 1} and hide the contents of exchanged messages unless the corresponding
server is corrupted.

Our 2BPR protocol further assumes a common reference string crs = (g, h, q)
containing two generators g and h of a cyclic group of prime order q where logg(h)
is not known.

At the beginning of the registration phase the client C commits to the integer
representation π of the chosen password string pw and sends this commitment to-
gether with a password share sb to the corresponding server Sb, b ∈ {0, 1}, along
with auxiliary information that is needed to perform the policy compliance proof.
For the latter, the client needs to prove the knowledge of π in the commitment
such that π = s0 +s1 and that it fulfills both policies f1 and f2. Thus, servers S0
and S1 eventually register the new client, accept and store the client’s password
share, iff each Sb holds sb such that s0 + s1 = π for π ← PWDtoINT(pw) and
f(pw) = true for f = f0 ∩ f1.

4.1 Protocol Overview

In Figure 1 we give an overview of the 2BPR protocol involving a client C and
two servers Sb, b ∈ {0, 1}. The protocol proceeds in three phases. In the first
phase (client preparation) the client chooses pw ∈R Df , encodes it to π, com-
putes shares s0 and s1, and computes commitments C0,C1,D0,D1 to the shares
and the password. In the second phase (password registration) C interacts with
each server Sb, b ∈ {0, 1} over a server-authenticated and confidential channel.
C computes a commitment Ci for each encoded character πi ← CHRtoINT(ci),
ci ∈ pw, and a second commitment C ′i as a re-randomised version of Ci. The
set C ′ containing the re-randomised commitments C ′i, is then shuffled and used
to prove through the Proof of Membership (PoM) protocol that each character
committed to in C ′i ∈ C ′ is a member of some character set ωφ(i), chosen accord-
ing to policy f . Note that PoM must be performed over the shuffled set C ′ of
commitments as the server would otherwise learn the type (i.e. lower/upper case,
digit, or symbol) of each password character. To further prove that transmitted
commitments C,Cb, and Db are correct, namely that the product of commit-
ments in C commits to the password pw, Cb contains the correct share sb, and
Db contains pw, client and server execute the Proof of Correctness (PoC) pro-
tocol. Finally, the client proves to each server that set C ′ is a shuffle of set C
by executing the Proof of Shuffle (PoS) protocol. This proof is necessary to fi-
nally convince both servers that (1) the characters committed to in C ′ are the
same as the characters in the commitments in C, which can be combined to
password pw (as follows from the PoC protocol) and (2) each commitment Ci
is for a character ci ∈ pw from some set ωi, chosen according to policy f (as
follows from the PoM protocol). For all three committed Σ-protocols (PoM,
PoC, PoS) we use variables as defined in Section 2. If each server Sb, b ∈ {0, 1}
successfully verifies all three committed Σ-protocols and the length of the com-
mitted password pw is policy-conform, then both servers proceed with the last
phase. In the third phase (share verification) the two servers S0 and S1 interact
with each other over a mutually-authenticated and confidential channel. Each

10

Phase I – Client Preparation

C (S0, S1, f = f0 ∩ f1,pw, crs)
Encode π ← PWDtoINT(pw);
Compute password shares: s0 ∈R Zq,

s1 = π − s0

Commit to shares:
C0 = gs0hr0 , C1 = gs1hr1

D0 = C0g
s1 , D1 = C1g

s0

Phase II – Password Registration

C (S0, S1, f = f0 ∩ f1,pw, crs) Sb (C, S1−b, f = f0 ∩ f1, crs)
Commit to all characters in pw:

Ci = gπihri ; C′i = Cih
r′i

Shuffle C′ s.t. each C′i = Cφ(i)h
r′
φ(i)

with permutation φ over [1, |pw|];
For each ci ∈ pw identify appropriate
set ωφ(i) and build ω from it;

Execute ZK proofs with the server

Choose challenges
Proceed if
|C| = |C′| ≥ nmin, PoM,
PoC and PoS are valid

CoPoM, CoPoC, CoPoS, |pw|

ChPoC, ChPoM, ChPoS

RsPoM, RsPoC, RsPoS

Phase III – Share Verification

S0 (C, S1, f = f0 ∩ f1, crs)

D′1 = C1g
s0

If D′0 = D0
store (C, S1, s0)

S1 (C, S0, f = f0 ∩ f1, crs)

D′0 = C0g
s1

If D′1 = D1
store (C, S0, s1)

D′1

D′0

Fig. 1: Two-Server BPR Protocol — A High-Level Overview
ω contains character sets of cφ(i) ordered according to permutation φ used in PoM

Sb computes its verification value D′1−b and sends it to S1−b. Upon receiving D′b,
Sb checks it against Db to verify that the client used the same password with
both servers in the second phase, i.e. that sb + s1−b = π. If this verification is
successful, Sb stores the client’s password share (C, S1−b, sb) and considers C as
being registered.

4.2 Two-Server BPR Specification

In the following we give a detailed description of the 2BPR protocol. To this end
we describe the three proofs PoC, PoM and PoS detailing on their computa-
tions. We describe the interaction between client C and server Sb and therefore
only consider one policy fb. Note that C and each server Sb perform the same
protocol. If both servers accept, the password fulfils the policy f = fb ∩ f1−b.

We first describe the client’s pre-computations such as password encoding
and sharing before giving a detailed description of the proofs. The protocol

11

operates on a group G of prime-order q with generator g. Further, let h, fi ∈R G
for i ∈ [−4,m] denote random group elements such that their discrete logarithm
with respect to g is unknown. Public parameters of the protocol are defined as
(q, g, h,f) with f = {fi} where m is at least n = |pw|. In practice m can be
chosen big enough, e.g., 100, in order to process all reasonable passwords. Note
that we use the range i ∈ [0, n− 1] for characters pw[i], but [1, x] for most other
ranges.

Phase I – Client Preparation We assume that password policies f0 and f1
are known by the client. This can be achieved by distributing them beforehand
with other set-up parameters. The client chooses a password pw ∈R Df from
the dictionary and encodes it π ← PWDtoINT(pw). The password is shared by
choosing a random sb ∈R Zq and computing s1−b = π − sb. The client then
commits to both password shares Cb = gsbhrb and C1−b = gs1−bhr1−b with
rb, r1−b ∈R Zq and computes commitments to the entire password π with the
same randomness, i.e. Db = Cbg

s1−b and D1−b = C1−bg
sb . For the following

proofs the client further encodes every character ci ∈ pw as πi ← CHRtoINT(ci).

Phase II – Password Registration The client iterates over all encoded
characters πi to perform the following operations: commit to πi by comput-
ing Ci = gπihri , C ′i = Cih

r′i for ri, r′i ∈R Z∗q ; choose a random permutation φ(i)
over [1, n] to shuffle C ′i; if πi is significant for any Rj ∈ R, set ωφ(i) ← Rj ,
otherwise ωφ(i) ← Σ (all ASCII characters). Let li ∈ N denote the index in
ωφ(i) such that ci = ωφ(i)[li]. Values (Ci, C ′i, ωφ(i), φ(i), li, πi, ri, r′i) are used in
the following zero-knowledge proofs. The client combines previously computed
values C = {Ci}. Shuffled commitments C ′φ(i) and sets ωφ(i) are combined ac-
cording to the shuffled index φ(i), i.e. C ′ = {C ′φ(i)} and ω = {ωφ(i)}. Once these
computations are finished C and Sb proceed with the protocol. In the following
we describe the three proofs PoM, PoC and PoS and define their messages.

Proof of Correctness (PoC) This proof links the password shares, sent to
each server, to the proof of policy compliance and shows knowledge of the other
password share. We define the proof of correctness for an encoded password π,
which proves that share sb can be combined with a second share s1−b such that
π = sb + s1−b and that the received commitments to password characters ci can
be combined to a commitment to that same password π. PoC is defined as a
committed zero-knowledge proof between C and Sb for the statement

ZKP{(π, r1−b, rb, rCb) : C1−bg
sb = gπhr1−b ∧

n−1∏
i=0

Cb
i

i = gπhrCb ∧Db = gπhrb}.

Ci = gπihri are character commitments from the set-up stage and rCb =
∑n−1
i=0 b

i·
ri is the combined randomness from the character commitments Ci. C1−b = gs1−b

hr1−b , Db = Cbg
s1−b , and Cb = gsbhrb are the share and password commitments

from the client preparation phase. This incorporates the link of the password

12

commitment to the product of the commitments to the single characters with
the proof of knowledge of the combined password π = sb + s1−b. The messages
for PoC are computed as follows:

1. The client chooses random kπ, kρb, kρ(1−b), kρC ∈R Zq, computes tC(1−b) =
gkπhkρ(1−b) , tC = gkπhkρC and tDb = gkπhkρb . The first message with rComPoC ∈R
Zq is then given by commitment

ComPoC = gH(C1−bg
sb ,{Ci},Db,tC(1−b),tC ,tDb)hrComPoC .

2. After receiving ComPoC from the client the server chooses a random chal-
lenge ChPoC,b ∈R Zq and sends it back to the client.
3. After receiving the challenge ChPoC,b, the client computes sπ = kπ +
ChPoC,bπ, sρ(1−b) = kρ(1−b) + ChPoC,br1−b, sρC = kρC + ChPoC,b

∑n−1
i=0 b

iri and
sρb = kρb + ChPoC,brb before computing the next message with rRsPoC ∈R Zq

RsPoC1 = gH(sπ,sρ(1−b),sρC ,sρb)hrRsPoC .

4. Eventually the client sets the decommitment message

RsPoC2 = (sb,C1−b, {Ci},Db, tC(1−b), tC , tDb, sπ, sρ(1−b), sρC , sρb, rComPoC , rRsPoC).

RsPoC1 and RsPoC2 form together client’s response message RsPoC. The server
verifies the proof by checking the following:

– ComPoC
?= gH(C1−bg

sb ,{Ci},Db,tC(1−b),tC ,tDb)hrComPoC

– RsPoC1
?= gH(sπ,sρ(1−b),sρC ,sρb)hrRsPoC ; gsπhsρ(1−b) ?= tC(1−b)(C1−bg

sb)ChPoC,b

– gsπhsρC ?= tC(
n−1∏
i=0

Cb
i

i)ChPoC,b ; gsπhsρb
?= tDbD

ChPoC,b
b

Proof of Membership (PoM) The proof of membership PoM proves for
every password character cφ(i) ∈ pw that its integer value πφ(i) ∈ ωφ(i) using the
shuffled commitments C ′φ(i), i.e.

ZKP{{πi, ri}i∈[0,n−1] : C ′φ(i) = gπihri ∧ πφ(i) ∈ ωφ(i)}.

This proof consists of the following steps:
1. To prove that every C ′φ(i) commits to a value in the according set ωφ(i) the
client computes the following values for the first move of the proof:

– ∀πj ∈ ωφ(i) ∧ πj 6= πφ(i) : sj ∈R Z∗q , cj ∈R Z∗q and tj = gπjhsj (C ′φ(i)/g
πj)cj

– kρi ∈R Z∗q ; tlφ(i) = gπihkρi

Values (tφ(i), sφ(i), cφ(i), kρi), with tφ(i) = {tj , tlφ(i)}, sφ(i) = {sj}, and cφ(i) =
{cj} are stored for future use. Note that tlφ(i) has to be added at the cor-
rect position lφ(i) in tφ(i). A commitment CoPoM = gH(ω,C′,tφ(i))hrCoPoM with
rCoPoM ∈R Zq is computed as output with ω = {ωφ(i)}.

13

2. The server stores received values, checks them for group membership, and
chooses a random challenge ChPoM = c ∈R Z∗q .
3. After receiving the challenge c from the server, the client computes the
following verification values for all commitments C ′φ(i) (note that sj and cj for
all j 6= lφ(i) are chosen already):

clφ(i) = c⊕
|ωφ(i)|⊕

j=1,j 6=lφ(i)

cj ; slφ(i) = kρφ(i) − clφ(i)(ri + r′φ(i)),

where i is the index of C ′φ(i) before shuffling. The client then combines s =
{sφ(i) ∪ {slφ(i)}} and c = {cφ(i) ∪ {clφ(i)}}. Note again that the set union has to
consider the position of lφ(i) to add the values at the correct position. A com-
mitment RsPoM1 = gH(s,c)hrRsPoM with rRsPoM ∈R Zq is computed as output.
4. Eventually the client sets the decommitment message with t = {tφ(i)},
ω = {ωφ(i)}, rCoPoM = {rCoPoMi}, rRsPoM = {rRsPoMi}, and C ′ = {C ′φ(i)} to

RsPoM2 = (ω,C ′, t, s, c, rCoPoM , rRsPoM).

RsPoM1 and RsPoM2 form together RsPoM. To verify the proof, i.e. to verify that
every commitment C ′φ(i) in C ′ commits to a character ci from either a subset of
Σ if significant or Σ if not, the server verifies the following for every set ωφ(i) ∈ ω
with i ∈ [1, n] and x = φ(i):

– Let cj ∈ ci for ci ∈ c and verify c ?=
⊕|ωi|

j=1 cj

– Let πj ∈ ωφ(i), si ∈ s, ti ∈ t, and ci ∈ c, and verify ti[j]
?= gπjhsi[j](C ′i/gπj)ci[j]

for all j ∈ [1, |ωφ(i)|]

The server further verifies commitments CoPoM
?= gH(ω,C′,t) hrCoPoM and RsPoM

?=
gH(s,c)hrRsPoM . The verification of the proof is successful iff all equations above
are true and ω contains all significant characters for fb.

Proof of Shuffle (PoS) The proof of correct shuffling PoS is based on the
proofs from [29,30]. In the following we specify the proof to work with Pedersen
commitments instead of ElGamal ciphertexts. Note that indices for commitments
C and C ′ run from 1 to n and index ranges in the following change frequently.

1. In the first move, the client (prover) builds a permutation matrix and com-
mits to it. First he chooses random A′j ∈R Z∗q for j ∈ [−4, n]. Let Aij denote a
matrix with i ∈ [−4, n] and j ∈ [0, n], i.e. of size (n + 5) × (n + 1), such that a
n× n sub-matrix of Aij is the permutation matrix (built from permutation φ).
Further, let φ−1 be the inverse shuffling function. This allows us to write the
shuffle as C ′i =

∏n
j=0 C

Aji
j = Cκih

r′κi with C0 = h and κi = φ−1(i) for i ∈ [1, n].
The matrix Aij is defined with Aw0 ∈R Z∗q , A−1v ∈R Z∗q and A0v = r′φ(v) for

14

w ∈ [−4, n] and v ∈ [1, n]. The remaining values in Aij are computed as follows
for v ∈ [1, n]:

– A−2v =
n∑
j=1

3A2
j0Ajv; A−3v =

n∑
j=1

3Aj0Ajv; A−4v =
n∑
j=1

2Aj0Ajv

After generating Aij the client commits to it in (C ′0, f̃ ,f ′, w, w̃) for f ′ = {f ′v}
with v ∈ [0, n]:

– f ′v =
n∏

j=−4
f
Ajv
j ; f̃ =

n∏
j=−4

f
A′j
j ; w̃ =

n∑
j=1

A2
j0 −A−40

– C ′0 = g

∑n

j=1
πjAj0h

A00+
∑n

j=1
rjAj0 ; w =

n∑
j=1

A3
j0 −A−20 −A′−3 (2)

Note that C ′0 =
∏n
j=0 C

Aj0
j = hA00

∏n
j=1 C

Aj0
j , but Eq. 2 saves n− 1 exponenti-

ations. The output is then created as CoPoS = gH({Ci},{C′φ(i)},C
′
0,f̃ ,f

′,w,w̃)hrCoPoS

with rCoPoS ∈R Zq.
2. When receiving CoPoS the server chooses c = {cv} with cv ∈R Z∗q for
v ∈ [1, n] and sets ChPoS = c.
3. After receiving challenges c from the server, the client computes the follow-
ing verification values (s, s′) for s = {sv} and s′ = {s′v} with v ∈ [−4, n] and
c0 = 1:

sv =
n∑
j=0

Avjcj ; s′v = A′v +
n∑
j=1

Avjc
2
j

The client sets RsPoS1 = gH(s,s′)hrRsPoS with rRsPoS ∈R Zq.
4. Eventually, the client sends the decommitment message to the server

RsPoS2 = (C ′0, f̃ ,f ′, w, w̃, s, s′, rCoPoS , rRsPoS).

Note that {Ci} and {C ′φ(i)} are omitted here as they are part of RsPoC2, RsPoM2
respectively, already. If this proof is used stand-alone, those values have to be
added to RsPoS2.

RsPoS1 and RsPoS2 form together RsPoS. The server verifies now that the correct-
ness of the commitments CoPoS

?= gH({Ci},{C′φ(i)},C
′
0,f̃ ,f

′,w,w̃)hrCoPoS and RsPoS1
?=

gH(s,s′)hrRsPoS , and that the following equations hold for a randomly chosen
α ∈R Z∗q and C0 = h:

–
n∏

v=−4
f
sv+αs′v
v

?= f ′0f̃
α

n∏
j=1

f ′j
cj+αc2

j ;
n∏
v=0

Csvv
?=

n∏
j=0

C ′j
cj ;

–
n∑
j=1

(s3
j − c3

j)
?= s−2 + s′−3 + w;

n∑
j=1

(s2
j − c2

j)
?= s−4 + w̃

The server accepts the proof if and only if all those verifications succeed. This
concludes the proof of correct shuffling.

15

Phase III – Share verification To verify that the client used the same pass-
word pw and shares s0, s1 with both servers S0 and S1, the servers compute
the commitment D′b from the share commitment Cb and their share s1−b, and
exchange it. Comparing D′b with the value Db received from the client, the server
verifies share correctness. This concludes the 2BPR protocol and each server Sb
stores (C, S1−b, sb) if all checks were successful.

4.3 Security Analysis

We show that our 2BPR protocol is secure in the model from Section 3.1 and
thus offers policy compliance and password blindness. For space limitations we
include only the proofs of Theorems 1 and 2 note that PoM and PoC protocols
are standard concurrent ZK proofs and PoS is a slightly modified concurrent
ZK proof from [29,30].

Lemma 1. The PoC protocol from Section 4.2 is a concurrent zero-knowledge
proof if the discrete logarithm problem in the used group G is hard and H :
{0, 1}∗ 7→ Zq is a collision resistant hash function.

Lemma 2. The PoM protocol from Section 4.2 is a concurrent zero-knowledge
proof if the discrete logarithm problem in the used group G is hard and H :
{0, 1}∗ 7→ Zq is a collision resistant hash function.

Lemma 3 ([29,30]). The PoS protocol from Section 4.2 is a concurrent zero-
knowledge proof of knowledge of shuffling φ if the discrete logarithm problem in
the used group G is hard and H : {0, 1}∗ 7→ Zq is a collision resistant hash
function.

Theorem 1. If G is a DL-hard group of prime-order q with generators g and h,
and H a collision resistant hash function, the construction in Figure 1 provides
policy compliance according to Definition 2.

Proof. We show how to build a successful attacker on the soundness of PoC,
PoM and PoS using a successful attacker against policy compliance who has
access to Setup and SendC oracles.

Game0 : This game corresponds to the correct execution of the protocol.
Game1 : In this game we change how SendC(Ci, Sb,j ,m) queries are answered.
If m is parsed as (CoPoM, CoPoC, CoPoS) the CoPoM is used by the challenger as
output to the PoM verifier who returns challenge ChPoM which is then returned
in response to the SendC query (other challenges are generated at random). If
m is parsed as (RsPoM1, RsPoC1, RsPoS1) or (RsPoM2, RsPoC2, RsPoS2) and the
first SendC query from that session was forwarded to the verifier then RsPoM1,
RsPoM2 respectively, is used as output to the PoM verifier. It is easy to see
that the challenger breaks soundness of PoM if the adversary uses a password
pw 6∈ Df and PoM verifies successfully. We can therefore assume for the re-
maining games that pw ∈ Df .

16

Game2 : In this game we introduce another change to the processing of SendC(Ci,
Sb,j ,m) queries. If m is parsed as (CoPoM, CoPoC, CoPoS) then CoPoC is used by
the challenger as output to the PoC verifier who returns challenge ChPoC that is
then used as response to the SendC query (other challenges are generated at ran-
dom). If m is parsed as (RsPoM1, RsPoC1, RsPoS1) or (RsPoM2, RsPoC2, RsPoS2)
and the first SendC query from that session was forwarded to the verifier then
RsPoC1, RsPoC2 respectively, is used as output to the PoC verifier. It is easy to
see that the challenger breaks soundness of PoC if s0 +s1 6= π, i.e. the password
share sb can not be used with a second share s1−b to rebuild the password π
committed to in C, i.e.

∑
i b
iπi 6= π. Observe further that the second share s1−b

has to be stored on server S1−b, i.e. the attacker has not performed the set-up
with Sb and S1−b with shares that do not combine to the same encoded password
π. Otherwise we can break the binding property of Pedersen commitments. In
particular, the attacker has to generate commitments C0,C1,D0 and D1 such
that C0g

s1 = D0 or C1g
s0 = D1. We can therefore for the remaining games that

the password share sb received by server Sb can be combined with the second
share s1−b of server S1−b to an encoded password π with according character
commitments Ci.
Game3 : In this game we change once more how SendC(Ci, Sb,j ,m) queries
are answered. If m is parsed as (CoPoM, CoPoC, CoPoS) then CoPoS is used by
the challenger as output to the PoS verifier who returns challenge ChPoS that
is then out in response to the SendC query (other challenges are generated at
random). If m from the adversary is parsed as (RsPoM1, RsPoC1, RsPoS1) or
(RsPoM2, RsPoC2, RsPoS2) and the first SendC query from that session was for-
warded to the verifier then RsPoS1, RsPoS2 respectively, is used as the output to
the PoS verifier. In this case if the attacker is rewindable, the challenger can act
as a knowledge extractor for PoS. In particular, we can extract shuffling func-
tion φ and re-randomiser {r′i} to break soundness of PoS. This implies that C ′

is a correct shuffle of C. We conclude the proof by observing that the password
shares stored on both servers can be combined to a policy compliant password.

Theorem 2. If G is a DL-hard group of prime-order q with generators g and h,
and H a collision resistant hash function, the construction in Figure 1 provides
password blindness according to Definition 3.

Proof. We prove this theorem through a sequence of games. In the last game
simulated interactions between servers and clients are simulated and password
independent, thus requiring the attacker to perform a random guess of the bit b.

Game0 : This is the correct execution of the protocol.
Game1 : The challenger computes crs with the knowledge of the trapdoor
τ = logg(h).
Game2 : The challenger simulates the proofs PoC, PoM and PoS and mes-
sages exchanged between the servers as part of the Execute oracle but stores two
correct shares on the servers to allow consistency if servers become corrupted.
Since at least one server must remain uncorrupted the probability difference be-
tween both games is negligible due to the zero-knowledge property of the proofs.

17

Game3 : This game modifies SendS and SendSS responses if the second partici-
pating server is uncorrupted by simulating zero-knowledge proofs and answering
SendSS queries using D′b = Db. To guarantee consistency in case of corruptions
the challenger still stores appropriate shares. The probability difference between
both games is negligible due to the zero-knowledge property of the proofs. Since
all proofs are password-independent and Pedersen commitments offer uncondi-
tional hiding the attacker can only win by guessing b.

5 Performance and Use with 2PAKE/2PASS protocols

An unoptimised prototype of the 2BPR protocol from Section 4 was implemented
over the NIST P-192 elliptic curve [31] in Python using the Charm framework
[32] to estimate the performance. The tests (completed on a laptop with an Intel
Core Duo P8600 at 2.40GHz for both client and server) underline the claim that
the protocol is practical. For instance, for a password of length 10 and policies
(dl, 5) and (ds, 7) computations take 1.4 seconds on the client and 0.68 seconds
on each server. The overall computing time for a password of length 10 was 2.76
sec and increased to 6.34 seconds for a password of length 20. Also note that the
execution can be parallelised if the client performs the proofs with S0 and S1 at
the same time. The source code is available from https://goo.gl/XfIZtn.

Application to existing 2PAKE/2PASS protocols Our 2BPR protocol can
be used to register passwords for 2PAKE and 2PASS protocols that adopt addi-
tive password sharing in Zq or multiplicative sharing in G. This includes 2PAKE
protocols from [15,25] for which no password registration procedures were ad-
dressed. Integration of 2BPR into 2PASS protocols is more involved since pass-
word registration is considered to be part of the 2PASS protocol during the secret
sharing phase. 2PASS protocols in general can be divided in two stages: password
and secret registration/sharing and secret reconstruction. While the approach
from [16] and subsequent works [33,34,18] do not actually share the password
and could therefore use other means to verify policy compliance of a passwords
used, the UC-secure 2PASS protocol from [17] uses multiplicative password shar-
ing in G. In order to use our 2BPR protocol withing the setup procedure of [17]
we can redefine the encoded password to gπ with π ← PWDtoINT(pw) such that
shares are computed as gπ = gs0gs1 . The first message (step 1) from the setup
protocol in [17] can piggyback the first 2BPR protocol message. The subsequent
three messages between the client and each server are performed between step 1
and step 2, while the inter-server communication can be piggybacked on step 2
and step 3. In addition to checking correctness of shares in the setup of [17] the
servers can now verify the 2BPR proofs to check policy compliance. This would
adds three flows to the setup protocol of [17].

18

https://goo.gl/XfIZtn

6 Conclusion

In this work we introduced the notion of two-server blind password registration
(2BPR), which is a solution for secure registration of policy-compliant, user-
selected passwords for 2PAKE/2PASS protocols where each server is supposed
to learn only its own share of the password and whether the combined password
is conform with his password policy. Our efficient 2BPR protocol can be used
to register 2PAKE/2PASS passwords satisfying server-chosen policies over the
alphabet of all 94 printable ASCII characters.

References

1. Reuters, “Trove of Adobe user data found on Web after breach: security firm,”
http://goo.gl/IC4lu8, 2014, Accessed: 01/04/2015.

2. Nik Cubrilovic, “RockYou Hack: From Bad To Worse,” http://goo.gl/AF5ZDM,
2014, Accessed: 01/04/2015.

3. Thomson Reuters, “Microsoft India store down after hackers take user data,” http:
//goo.gl/T7puD1, 2014, Accessed: 01/04/2015.

4. Dan Goodin, “Hack of Cupid Media dating website exposes 42 million plaintext
passwords,” http://goo.gl/ImLE1C, 2014, Accessed: 01/04/2015.

5. hashcat, “hashcat - advanced password recovery,” http://hashcat.net/, 2014, Ac-
cessed: 01/04/2015.

6. Openwall, “John the Ripper password cracker,” http://www.openwall.com/john/,
2014, Accessed: 01/04/2015.

7. J. Ma, W. Yang, M. Luo, and N. Li, “A Study of Probabilistic Password Models,”
in IEEE S&P, 2014, pp. 689–704.

8. M. Dürmuth and T. Kranz, “On Password Guessing with GPUs and FPGAs,” in
PASSWORDS’14, 2014, pp. 19–38.

9. M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password Strength: An Empirical
Analysis,” in INFOCOM. IEEE, 2010, pp. 983–991.

10. J. Bonneau, “The Science of Guessing: Analyzing an Anonymized Corpus of 70
Million Passwords,” in IEEE S & P. IEEE Computer Society, 2012, pp. 538–552.

11. W. Ford and B. S. K. Jr., “Server-assisted generation of a strong secret from a
password,” in WETICE. IEEE, 2000, pp. 176–180.

12. P. D. MacKenzie, T. Shrimpton, and M. Jakobsson, “Threshold password-
authenticated key exchange,” in CRYPTO’02, ser. LNCS, vol. 2442. Springer,
2002, pp. 385–400.

13. J. G. Brainard, A. Juels, B. Kaliski, and M. Szydlo, “A New Two-Server Approach
for Authentication with Short Secrets,” in USENIX Security Symposium. USENIX
Association, 2003.

14. M. Szydlo and B. S. K. Jr., “Proofs for Two-Server Password Authentication,” in
CT-RSA’05, ser. LNCS, vol. 3376. Springer, 2005, pp. 227–244.

15. J. Katz, P. MacKenzie, G. Taban, and V. Gligor, “Two-server password-only au-
thenticated key exchange,” in ACNS’05, ser. LNCS, vol. 3531. Springer, 2005,
pp. 1–16.

16. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu, “Password-protected secret
sharing,” in CCS’11. ACM, 2011, pp. 433–444.

19

http://goo.gl/IC4lu8
http://goo.gl/AF5ZDM
http://goo.gl/T7puD1
http://goo.gl/T7puD1
http://goo.gl/ImLE1C
http://hashcat.net/
http://www.openwall.com/john/

17. J. Camenisch, A. Lysyanskaya, and G. Neven, “Practical yet universally compos-
able two-server password-authenticated secret sharing,” in CCS’12. ACM, 2012,
pp. 525–536.

18. S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-Optimal Password-Protected
Secret Sharing and T-PAKE in the Password-Only Model,” in ASIACRYPT’14,
ser. LNCS, vol. 8874. Springer, 2014, pp. 233–253. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-45608-8_13

19. F. Kiefer and M. Manulis, “Zero-Knowledge Password Policy Checks and Verifier-
Based PAKE,” in ESORICS’14, ser. LNCS, vol. 8713. Springer, 2014, pp. 295–312.

20. T. P. Pedersen, “Non-Interactive and Information-Theoretic Secure Verifiable Se-
cret Sharing,” in CRYPTO’91, ser. LNCS, vol. 576. Springer, 1991, pp. 129–140.

21. I. Damgård, “Efficient concurrent zero-knowledge in the auxiliary string model,”
in EUROCRYPT’00, ser. LNCS, vol. 1807. Springer, 2000, pp. 418–430.

22. S. Jarecki and A. Lysyanskaya, “Adaptively secure threshold cryptography: In-
troducing concurrency, removing erasures,” in EUROCRYPT’00, ser. LNCS, vol.
1807. Springer, 2000, pp. 221–242.

23. Y. Yang, R. H. Deng, and F. Bao, “A Practical Password-Based Two-Server Au-
thentication and Key Exchange System,” IEEE Trans. Dependable Sec. Comput.,
vol. 3, no. 2, pp. 105–114, 2006.

24. H. Jin, D. Wong, and Y. Xu, “An efficient password-only two-server authenticated
key exchange system,” Information and Communications Security, pp. 44–56, 2007.

25. F. Kiefer and M. Manulis, “Distributed Smooth Projective Hashing and Its Appli-
cation to Two-Server Password Authenticated Key Exchange,” in ACNS’14, ser.
LNCS, vol. 8479. Springer, 2014, pp. 199–216.

26. T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task Force,
Aug. 2008, updated by RFCs 5746, 5878, 6176, 7465. [Online]. Available:
http://www.ietf.org/rfc/rfc5246.txt

27. T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the Security of TLS-DHE in
the Standard Model,” in CRYPTO’12, ser. LNCS, vol. 7417. Springer, 2012, pp.
273–293.

28. H. Krawczyk, K. G. Paterson, and H. Wee, “On the Security of the TLS Protocol:
A Systematic Analysis,” in CRYPTO’13, ser. LNCS, vol. 8042. Springer, 2013,
pp. 429–448.

29. J. Furukawa and K. Sako, “An Efficient Scheme for Proving a Shuffle,” in
CRYPTO’01, ser. LNCS, vol. 2139. Springer, 2001, pp. 368–387.

30. J. Furukawa, “Efficient and Verifiable Shuffling and Shuffle-Decryption,” IEICE
Transactions, vol. 88-A, no. 1, pp. 172–188, 2005.

31. NIST, “National Institute of Standards and Technology. Recommended elliptic
curves for federal government use,” http://goo.gl/M1q10h, 1999.

32. J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green,
and A. D. Rubin, “Charm: a framework for rapidly prototyping cryptosystems,”
Journal of Cryptographic Engineering, vol. 3, no. 2, pp. 111–128, 2013. [Online].
Available: http://dx.doi.org/10.1007/s13389-013-0057-3

33. I. Pryvalov and A. Kate, “Introducing Fault Tolerance into Threshold Password-
Authenticated Key Exchange,” Cryptology ePrint Archive, Report 2014/247,
2014. [Online]. Available: http://eprint.iacr.org/2014/247

34. J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven, “Memento: How to
reconstruct your secrets from a single password in a hostile environment,” in
CRYPTO’14, ser. LNCS, vol. 8617. Springer, 2014, pp. 256–275.

20

http://dx.doi.org/10.1007/978-3-662-45608-8_13
http://www.ietf.org/rfc/rfc5246.txt
http://goo.gl/M1q10h
http://dx.doi.org/10.1007/s13389-013-0057-3
http://eprint.iacr.org/2014/247

	Blind Password Registration for Two-Server Password Authenticated Key Exchange and Secret Sharing Protocols
	Franziskus Kiefer and Mark Manulis
	Introduction
	Preliminaries
	Commitments
	Pedersen commitments Pedersen91

	Zero Knowledge Proofs
	Passwords
	Password Sharing
	Password Policies
	Password Dictionaries

	Two-Server Blind Password Registration
	Security Model for 2BPR Protocols

	An Efficient Two-Server BPR Protocol
	Protocol Overview
	Two-Server BPR Specification
	Phase I – Client Preparation
	Phase II – Password Registration
	Phase III – Share verification

	Security Analysis

	Performance and Use with 2PAKE/2PASS protocols
	Application to existing 2PAKE/2PASS protocols

	Conclusion

