
Group Signatures:
Authentication with Privacy

Authors

Prof. Dr. Mark Manulis,

Nils Fleischhacker,

Felix Günther,

Franziskus Kiefer,

Bertram Poettering

Cryptographic Protocols Group

Department of Computer Science

Technische Universität Darmstadt

Mornewegstrasse 30

64293 Darmstadt

GERMANY

Bundesamt für Sicherheit in der Informationstechnik
Postfach 20 03 63
53113 Bonn
Tel.: +49 22899 9582-0
E-Mail: bsi-publikationen@bsi.bund.de
Internet: https://www.bsi.bund.de
© Bundesamt für Sicherheit in der Informationstechnik 2012 c

http:https://www.bsi.bund.de
mailto:bsi-publikationen@bsi.bund.de

Contents

List of Figures 9

List of Tables 11

List of Main Symbols and Notations 13

I Group Signatures: Authentication with Privacy 15

1 Introduction and Background 17

1.1 Authentication with Digital Signatures . 17

1.1.1 Digital Signatures . 17

1.1.2 Public Key Infrastructures . 18

1.1.3 Privacy Limitations . 20

1.2 Group Signatures: Authentication with Privacy 20

1.2.1 Group-based Authentication . 20

1.2.2 Concept of Group Signatures . 21

1.2.3 Applications of Group Signatures . 22

1.3 Classification of Group Signature Schemes . 23

1.3.1 Static Group Signatures . 24

1.3.2 Dynamic Group Signatures . 25

1.3.3 Group Signatures with Verifiable Opening 26

1.3.4 Group Signatures with Distributed Authorities 28

1.3.5 Group Signatures with Special Properties 29

1.4 Intuitive Security Requirements for Group Signatures 30

1.4.1 Unforgeability of Signatures . 30

1.4.2 Exculpability . 31

1.4.3 Traceability of Signers . 31

1.4.4 Coalition Resistance . 31

1.4.5 Protection against Framing Attacks . 32

1.4.6 Anonymity of Signers . 32

1.4.7 Unlinkability of Signatures . 32

1.5 Group Signatures and Provable Security . 32

1.5.1 Computational Security and Adversarial Experiments 33

1.5.2 Formal Security Requirements . 34

3

Contents

1.5.3 Group Signatures and Quantum Computers 36

1.6 Related Approaches for Authentication with Privacy 37

1.6.1 Anonymous Signatures . 37

1.6.2 Anonymous Credentials . 38

1.6.3 Affiliation-Hiding Authentication . 39

1.6.4 Blind Signatures . 40

1.6.5 Direct Anonymous Attestation . 40

1.6.6 Ring Signatures . 41

1.6.7 Traceable Signatures . 42

2 Group Signatures: Definitions and Security Models 45

2.1 Static Group Signature Schemes . 45

2.1.1 Algorithms of Static Schemes and Their Correctness Property 45

2.1.2 Adversary Model and Oracles for Static Schemes 46

2.1.3 Anonymity Definitions for Static Schemes 47

2.1.4 Traceability Definitions for Static Schemes 50

2.1.5 Non-Frameability Definitions for Static Schemes 51

2.2 Dynamic Group Signature Schemes . 53

2.2.1 Algorithms of Dynamic Schemes and Their Correctness Property . . . 53

2.2.2 Optional Algorithms for Membership Revocation 55

2.2.3 Adversary Model and Oracles for Dynamic Schemes 56

2.2.4 Anonymity Definitions for Dynamic Schemes 57

2.2.5 Traceability Definitions for Dynamic Schemes 59

2.2.6 Non-Frameability Definitions for Dynamic Schemes 60

2.3 Group Signature Schemes with Verifiable Opening 62

2.3.1 Algorithms of VO-Schemes and Their Correctness Property 63

2.3.2 Optional Algorithms for User PKI . 64

2.3.3 Adversary Model and Oracles for VO-Schemes 64

2.3.4 Anonymity Definitions for VO-Schemes 65

2.3.5 Traceability Definitions for VO-Schemes 66

2.3.6 Non-Frameability Definitions for VO-Schemes 67

2.4 Group Signature Schemes with Distributed Authorities 69

2.4.1 Algorithms of DA-Schemes and Their Correctness Property 69

2.4.2 Adversary Model and Oracles for DA-Schemes 71

2.4.3 Anonymity Definitions for DA-Schemes 71

2.4.4 Traceability Definitions for DA-Schemes 73

2.4.5 Non-Frameability Definitions for DA-Schemes 74

3 Cryptographic Foundations and Hardness Assumptions 77

3.1 General Hardness Assumptions . 77

3.1.1 One-Way Functions . 77

3.1.2 Trapdoor Permutations . 78

3.2 Number-Theoretic Hardness Assumptions . 78

3.2.1 Assumptions in the RSA Setting . 79

Federal Office for Information Security 4

Contents

3.2.2 Assumptions in the DL Setting . 80

3.2.3 Assumptions in the Setting of Bilinear Maps 80

3.3 Hash Functions . 83

3.3.1 The Random Oracle Model . 83

3.4 Digital Signatures . 84

3.5 Public-Key Encryption . 85

3.6 Commitment Schemes . 86

3.7 Zero-Knowledge Proofs and Signatures of Knowledge 87

3.7.1 Zero-Knowledge Proofs of Knowledge (ZKPoK) 87

3.7.2 Non-Interactive Zero-Knowledge Proofs of Knowledge (NIZKPoK) . . . 89

3.7.3 Signatures of Knowledge (SoK) . 92

4 Group Signatures based on General Assumptions 93

4.1 The Bellare-Micciancio-Warinschi Scheme . 93

4.1.1 The BMW Scheme . 93

4.1.2 Security of the BMW Scheme . 96

4.2 The Bellare-Shi-Zhang Scheme . 97

4.2.1 The BSZ Scheme . 97

4.2.2 Security of the BSZ Scheme . 99

5 Group Signatures in the RSA Setting 101

5.1 The Ateniese-Camenisch-Joye-Tsudik Scheme 102

5.1.1 The ACJT Scheme . 102

5.1.2 Security of the ACJT Scheme . 105

5.2 The Camenisch-Lysyanskaya Revocation Mechanism for the ACJT Scheme . . 106

5.2.1 Dynamic Accumulators and Group Management 107

5.2.2 The Camenisch-Lysyanskaya Accumulator for Prime Numbers 109

5.2.3 The ACJT Scheme with Membership Revocation 110

5.3 The Tsudik-Xu Scheme . 111

5.3.1 The TX Scheme . 112

5.3.2 Security of the TX Scheme . 117

5.4 The Camenisch-Groth Scheme . 118

5.4.1 The Basic CG Scheme . 119

5.4.2 Security of the Basic CG Scheme . 121

5.4.3 Dynamic Extensions of the CG Scheme 122

5.5 The Kiayias-Yung Scheme . 125

5.5.1 The KY Scheme . 125

5.5.2 Security of the KY Scheme . 128

5.5.3 The KY Scheme with Distributed Authorities 128

6 Group Signatures in the Discrete Logarithm Setting 131

6.1 The Ateniese-de Medeiros Scheme . 131

6.1.1 The AM Scheme . 131

6.1.2 Security of the AM Scheme . 135

Federal Office for Information Security 5

Contents

6.2 The Furukawa-Yonezawa Scheme . 136

6.2.1 The FY Scheme . 136

6.2.2 Security of the FY Scheme . 138

6.2.3 Approach to Distribute Join and Open Procedures 140

7 Group Signatures in the Setting of Bilinear Maps 141

7.1 The Boneh-Boyen-Shacham Scheme . 141

7.1.1 The BBS Scheme . 142

7.1.2 Security of the BBS Scheme . 144

7.1.3 Extensions of the BBS Scheme . 144

7.2 The Camenisch-Lysyanskaya Scheme . 145

7.2.1 The CL Scheme . 146

7.2.2 Security of the CL Scheme . 148

7.3 The Bichsel-Camenisch-Neven-Smart-Warinschi Scheme 149

7.3.1 The BCNSW Scheme . 149

7.3.2 Security of the BCNSW Scheme . 152

8 Group Signatures with Verifier-Local Revocation 155

8.1 Group Signature Schemes with Verifier-Local Revocation 155

8.1.1 Algorithms of VLR-Schemes and Their Correctness Property 155

8.1.2 Verifier-Local Revocation with Time Intervals (TVLR) 157

8.1.3 Adversary Model and Oracles for VLR/TVLR-Schemes 158

8.1.4 Anonymity Definitions for VLR/TVLR-Schemes 159

8.1.5 Traceability Definitions for VLR/TVLR-Schemes 160

8.1.6 Non-Frameability Definitions for VLR/TVLR-Schemes 161

8.2 The Boneh-Shacham Scheme . 162

8.2.1 The BS Scheme . 163

8.2.2 Security of the BS Scheme . 164

8.3 The Nakanishi-Funabiki Scheme . 165

8.3.1 The NF Scheme . 166

8.3.2 Security of the NF Scheme . 167

8.4 The Bichsel-Camenisch-Neven-Smart-Warinschi Scheme 168

8.4.1 The BCNSW-VLR Scheme . 168

8.4.2 Security of the BCNSW-VLR Scheme 170

9 Comparison of Group Signature Schemes 171

9.1 Functionality and Properties . 171

9.1.1 Overview . 171

9.1.2 Dynamic Behavior . 172

9.1.3 Support for Verifiable Opening . 173

9.1.4 Support for Distributed Authorities . 173

9.1.5 Support for Membership Revocation 174

9.2 Security Properties . 175

9.2.1 Overview . 175

Federal Office for Information Security 6

Contents

9.2.2 Anonymity of Signers . 177

9.2.3 Traceability of Signers . 177

9.2.4 Non-Frameability of Signers . 178

9.2.5 Cryptographic Assumptions . 178

9.3 Computational Complexity : Costs and Impact of Different Algorithms 179

9.3.1 Computational Costs for Group Managers 179

9.3.2 Computational Costs for Group Members and Verifiers 181

9.3.3 Costs and Impact of Key Generation 182

9.3.4 Costs and Impact of Admission Procedure 182

9.3.5 Costs and Impact of Group Signature Generation 183

9.3.6 Costs and Impact of Group Signature Verification 183

9.3.7 Costs and Impact of Opening Procedure 183

9.3.8 Costs and Impact of Judgement Procedure 184

9.4 Space Complexity : Lengths and Impact of Private and Public Parameters . . 184

9.4.1 Overview . 184

9.4.2 Length and Impact of Group Manager’s Secret Keys 186

9.4.3 Length and Impact of Group Public Keys 186

9.4.4 Length and Impact of Secret Signing Keys 187

9.4.5 Length and Impact of Output Group Signatures 187

9.4.6 Length and Impact of Revocation Lists and Public Update Information 187

II Group Signatures in Practice 189

10 Schemes, Parameters, and Test Environment 191

10.1 Selected Group Signature Schemes and Their Properties 191

10.2 Choice of Security Parameters . 194

10.2.1 General Overview . 194

10.2.2 Security Parameters for QR(N) Groups 195

10.2.3 Security Parameters for ZP

∗ Groups . 195

10.2.4 Security Parameters for Bilinear Groups with Type-2 Pairing 196

10.3 Test Environment, Utilities, and Methodology 197

10.3.1 Reference Platforms . 197

10.3.2 Utilized Libraries . 198

10.3.3 Test Methodology and Heuristics . 198

11 Dominant Operations and Measured Timings 201

11.1 Computation Costs in QR(N) Groups . 201

11.2 Computation Costs in Z∗

P Groups . 202

11.3 Computation Costs in Bilinear Groups with Type-2 Pairings 202

11.3.1 Timings of Type-2 Pairing Evaluations in the Literature 204

12 Specification and Performance of the Camenisch-Groth Scheme 207

12.1 Detailed Specification of the Camenisch-Groth Scheme 207

Federal Office for Information Security 7

Contents

12.2 Performance Heuristics for Group Management and Opening 212

12.3 Performance Heuristics for Signature Generation and Verification 214

12.3.1 Scalability of the Verification Procedure 215

12.4 Space Requirements for the Main Parameters 215

13 Specification and Performance of the Boneh-Shacham Scheme 219

13.1 Detailed Specification of the Boneh-Shacham Scheme 219

13.2 Performance Heuristics for Group Management and Opening 221

13.3 Performance Heuristics for Signature Generation and Verification 222

13.3.1 Scalability of the Verification Procedure 223

13.4 Space Requirements for the Main Parameters 224

14 Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi

Scheme 227

14.1 Detailed Specification of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme 227

14.2 Performance Heuristics for Group Management and Verifiable Opening 231

14.3 Performance Heuristics for Signature Generation and Verification 233

14.3.1 Scalability of the Verification Procedure 234

14.4 Space Requirements for the Main Parameters 235

15 Performance and Scalability Comparison 239

15.1 Performance and Scalability . 239

15.1.1 Performance Comparison for Group Management and Opening 239

15.1.2 Performance Comparison for Signature Generation and Verification . . 240

15.1.3 Comparison of Verification Scalability with Revocation Checks 241

15.1.4 Impact of Scalability on Group Sizes 244

15.2 Space Requirements for Secret and Public Parameters 247

15.2.1 Space Requirements for Secret Parameters 247

15.2.2 Space Requirements for Public Parameters 248

15.3 Concluding Discussion . 251

Bibliography 267

Federal Office for Information Security 8

List of Figures

1.1 Static Group Signatures . 24

1.2 Dynamic Group Signatures . 26

1.3 Verifiable Opening and User PKI . 27

1.4 Group Signatures with Distributed Authorities 28

12.1 CG Scheme: Scalability of Signing and Verification Procedures (2048-bit modulus) 216

12.2 CG Scheme: Scalability of Signing and Verification Procedures (3248-bit modulus) 217

12.3 CG Scheme: Scalability of Published Update Information 218

13.1 BS Scheme: Scalability of Signing and Verification Procedures 223

13.2 BS Scheme: Scalability of Published Revocation Lists 225

14.1 BCNSW-VLR Scheme: Scalability of Signing and Verification Procedures . . . 235

14.2 BCNSW-VLR Scheme: Scalability of Published Revocation Lists 236

15.1 Scalability of Verification Procedure with Revocation Checks (Our Measurements) 242

15.2 Scalability of Verification Procedure with Revocation Checks (Literature Reports) 243

15.3 Scalability Impact on Group Sizes (10% revoked members) 245

15.4 Scalability Impact on Group Sizes (25% revoked members) 246

15.5 Scalability of Published Revocation Information 250

9

List of Tables

1.1 Relationship between Formal and Intuitive Security Requirements 35

9.1 Functionality and Properties of Group Signature Schemes 172

9.2 Security Properties of Group Signature Schemes 175

9.3 Computational Costs for Group Managers . 180

9.4 Computational Costs for Members and Verifiers 181

9.5 Space Complexity of Group Signature Schemes 185

10.1 Functionality and Properties of CG, BS, and BCNSW-VLR Schemes 192

10.2 Security Properties of CG, BS, and BCNSW-VLR Schemes 192

10.3 Computational Costs for Members and Verifiers in CG, BS, and BCNSW-VLR

Schemes . 193

10.4 Space Complexity of CG, BS, and BCNSW-VLR Schemes 193

10.5 Recommended Parameters for 100- to 128-bit Security 195

10.6 Parameter Lengths in QR(N) Setting . 195

10.7 Parameter Lengths in Z∗

P Setting . 196

10.8 Parameter Lengths in Type-2 Bilinear Group with k = 6 197

11.1 Timings of Operations in QR(N) Groups . 201

11.2 Timings of Operations in Z∗

P Groups . 202

11.3 Timings of Operations in Bilinear Groups with Type-2 Pairing 203

11.4 Timings of Type-2 Pairing Evaluations from the Literature 205

12.1 CG Scheme: Dominant Operations in Group Management and Opening 213

12.2 CG Scheme: Performance Heuristics for Group Management and Opening . . 213

12.3 CG Scheme: Dominant Operations in Signature Generation and Verification . 214

12.4 CG Scheme: Performance Heuristics for Signature Generation and Verification 214

12.5 CG Scheme: Space Requirements . 216

13.1 BS Scheme: Dominant Operations in Signature Generation and Verification . . 222

13.2 BS Scheme: Performance Heuristics for Signature Generation and Verification 223

13.3 BS Scheme: Space Requirements . 225

11

14.1 BCNSW-VLR Scheme: Dominant Operations in Group Management and Veri­
fiable Opening . 232

14.2 BCNSW-VLR Scheme: Performance Heuristics for Group Management and Ver­
ifiable Opening . 233

14.3 BCNSW-VLR Scheme: Dominant Operations in Signature Generation and Ver­
ification . 233

14.4 BCNSW-VLR Scheme:	 Performance Heuristics for Signature Generation and

Verification . 234

14.5 BCNSW-VLR Scheme: Space Requirements 236

15.1 Comparison of Signing and Verification Procedures 240

15.2 Space Requirements for Secret Parameters . 247

15.3 Space Requirements for Public Parameters . 249

Federal Office for Information Security 12

List of Main Symbols and Notations

x ← f(y) x is the output of f() on input y

∈, ∈R, ←R choice, random choice, assignment of a randomized output

|x| length (in bits) or absolute value of x (context-dependent)

N set of natural numbers (≥ 0)

[1, n] integers in the interval between 1 and n

mod modulo operator

| divisor of, e.g. q|(p − 1) for q divides p − 1

κ, , λ security parameters or lengths

Λ, Γ integral ranges

p', q', p, q primes numbers (RSA setting)

N (safe) RSA modulus

Z∗
N multiplicative group of ZN , of ZQ

QR(N) group of quadratic residues modulo N

P , Q prime numbers (DL setting and bilinear maps)

ZP , ZQ set of integers modulo P , modulo Q

13

Z∗ , Z∗
P Q

G = (g), 1G

(G1, G2), GT

ψ : G2 → G1

A = (A1, A2)

st

X ExptΠ, A

Pr[·]

X AdvΠ,A

(sk, pk)

gmsk , ik , ok

reg [i]

grt [i]

gpk

upd

RL

(usk [i], upk [i])

gsk [i]

multiplicative group of ZP , of ZQ

cyclic group G with generator g, identity element of G

bilinear (input) groups, target group

homomorphism from G2 to G1 (in bilinear groups)

a (two-stage) adversary algorithm

state information passed between the stages A1 and A2

probabilistic experiment used to define security property X of a
cryptographic scheme Π against an adversary A

probability function

advantage function used to define success probability of an adver­
sary A against the security property X of a cryptographic scheme
Π

private/public key pair (in encryption, signature schemes)

group manager’s secret key, issuing key, opening key

registration entry for member i

revocation token for member i

group public key

(public) update information used to manage revocation

revocation list

private/public key pair of i within a user PKI

secret signing key of member i

Federal Office for Information Security 14

Part I.

Group Signatures:

Authentication with Privacy

15

1. Introduction and Background

In the age of digital interaction where synchronous and asynchronous communication of users
and exchange of data is increasingly carried out over unprotected public networks, including
the Internet, diverse wireless and mobile networks, the ability of an user to prove own iden­
tity to the distant communication partner or to claim being the origin of transmitted data is
one of the central security goals subsumed under the notion of authentication. Cryptography
offers manifold techniques for achieving this property in different contexts and with different
techniques.

1.1. Authentication with Digital Signatures

One of the most well-known and widely used cryptographic authentication mechanisms is a
digital signature. It is often viewed as a cryptographic analog of a handwritten signature and
belongs to mechanisms that use techniques of asymmetric or public-key cryptography. We will
give a short introduction to digital signatures, highlight their use in public key infrastructures,
and discuss some privacy limitations.

1.1.1. Digital Signatures

The basic concept of digital signatures involves a signer and potentially many verifiers. The
signer is given the ability to sign arbitrary messages or documents. For this purpose the signer
is in possession of some secret information, his private key sk, which is usually bound through
some strong mathematical relationship to the signer’s public key pk. This public key uniquely
identifies the signer amongst other parties, i.e. pk serves as a cryptographic identity of the
signer and is used by verifiers to check the validity of digital signatures that were generated by
the signer. A digital signature scheme is represented by three main algorithms:

Key generation. The key generation algorithm Kg is executed by the user initially to setup
own private/public key pair (sk, pk). The private key sk is kept secret by the user,
whereas the corresponding public key pk is made public, for example distributed to all
potential verifiers.

Signature generation. A user in possession of a key pair (sk, pk) can apply the signature
generation algorithm Sign to produce a digital signature σ on some message m.

Signature verification. Through the verification algorithm Vrfy any verifier can check the
validity of a signature σ on the given message m using the public key pk of the purported
signer. This algorithm decides whether σ is valid or not.

17

1. Introduction and Background

As in case of handwritten signatures, digital signatures should protect signers from imper­
sonation attacks. The traditional unforgeability requirement for digital signatures prevents any
other party from generating valid signatures on behalf of some signer. No other party that
knows the signer’s public key pk and can possibly lure the signer into signing arbitrary mes­
sages m, the so-called chosen message attacks, may produce a valid signature σ∗ on behalf of
that signer on some new message m ∗ .
Digital signatures are already widely used today to ensure authenticity of the signer and his

documents, for example to establish authenticated channel to some web server over a public
network, or as a tool for enforcing access control to a distant service, network, or any other
resource, or as an authorization mechanism for digital transactions, e.g. in online banking, or
simply for ensuring the integrity and proving the source of origin for digital documents created
and distributed by the signer.

1.1.2. Public Key Infrastructures

The most prominent application domain of digital signatures is in the construction of modern
public key infrastructures (PKI), where the primary goal of digital signatures is to establish an
authentic link between the cryptographic identity (i.e. public key) of some entity, possibly of a
human user or some digital device, and other (non-cryptographic) identities (or attributes) of
this entity, such as the real name, email address, role within some organization, domain name,
etc. This link can be established by the means of certification that reflects the existing trust
relationship between the issuer of the digital certificate and the certified entity.

Digital Certificates

In its very basic form a digital certificate certA→B is a signature generated by A in possession
of the key pair (skA, pkA) on a message containing (B, pkB), i.e. the non-cryptographic identity
B and the public key of B. Whenever B presents (B, pkB, certA→B) to some third party
(verifier) V , the latter can verify, whether certA→B is a valid signature of A on the message
(B, pkB) using the public key of A. The underlying idea is that A is trusted by V not to certify
invalid links between non-cryptographic identities and public keys. In this case valid certificate
certA→B would convince V that B is the owner of pkB, or, in other words, that pkB is the
cryptographic identity of B. This trust put into the digital certificate of B can further be
limited in time, for example if A includes some expiration time t and thus signs the message
(B, pkB, t). A may also exclude the non-cryptographic identity of B from the signed message,
in which case the issued certificate certA→B becomes anonymous.

Certification Authorities

In traditional public key infrastructures, the role of certificate issuers is exhibited by trusted
certification authorities that are often organized into a certification hierarchy, with some root
authority located at its highest level. Every certification authority CA(i), located at a lower level
i, has a public certificate certCA(i−1)→CA(i) issued by the certification authority CA(i−1) from
a higher level i − 1. The root authority CA(0) holds self-certified certificate certCA(0)→CA(0) ,

Federal Office for Information Security 18

1. Introduction and Background

i.e. it uses own private key skCA(0) to sign its own identity CA(0) and the public key pkCA(0) .
The root CA is trusted by all intermediate CAs and by all users of the PKI. Certification
authorities located at the lowest level of the hierarchy are typically responsible for issuing the
corresponding certificates to the actual PKI users. We observe that certification authorities
need not to be organized into a hierarchy, i.e. it is sufficient to have a single CA for setting up
the PKI. This CA would act at the same time as root CA and would also issue PKI certificates
to the PKI users. Irrespective of how many CAs are involved into a PKI it is ensured that
any PKI user A is in possession of the PKI certificate certCA(i)→A issued by some certification
authority CA(i) of that PKI.

Revocation of Certificates

One of central properties of public key infrastructures is the ability of certification authorities
to revoke PKI certificates that were issued in the past. There are many reasons, why PKI
certificates may need to be revoked, even before the possibly indicated expiration time t. This
may happen, for example, once the certified party A can no longer use its secret key skA

associated to the PKI-certified public key pkA, because that key was lost, accidentally erased,
stolen, or fallen to a cryptanalysis. Also PKI certificate of some certification authority CA(i)

may need to be revoked, either for the same reasons as PKI certificates of the users, or because
CA(i) can no longer be trusted to perform certification in a correct way.
In general, each certification authority is responsible for the revocation of certificates that

were issued by this authority. For this purpose, each CA(i) maintains a corresponding certificate
revocation list crl(i) that it authenticates to prevent manipulations. This list is updated with
unique identifiers (serial numbers) of certificates that were issued earlier and have to be revoked.
That is, each certificate issued by CA(i) usually contains some unique identifier and the link to
a location, from which crl(i) signed by CA(i) can be obtained. Using the latest version of crl(i)

any third party can check, whether some certificate issued by CA(i) has already been revoked,
in which case this certificate will be treated as invalid.

Validation of Certificates

Any PKI user A, in possession of a key pair (skA, pkA) and certificate (A, pkA, certCA(i)→A) can
use skA to produce a signature σ on some message m, and send (m, σ, (A, pkA, certCA(i)→A))
to the potential verifier V . In order to check whether A is the signer of m verifiers will perform
several verification checks:

•	 check validity of σ using the public key pkA,

•	 check validity of the certificate certCA(i)→A using the public key of the trusted CA(i), and

•	 check validity of certificates certCA(i−1)→CA(i) for all intermediate authorities CA(j) with
j = i − 1, . . . , 0 using their respective public keys pkCA(j) .

Federal Office for Information Security 19

1. Introduction and Background

1.1.3. Privacy Limitations

Aiming at authenticity of signers and on the establishment of a unique binding between the
signer and the authenticated documents, digital signatures, or more generally, PKI-based au­
thentication threatens user privacy. First and foremost, a digital signature σ issued by some
user A in possession of a PKI certificate (A, pkA, certCA→A) on some document m reveals
the identity A of the signer to all potential verifiers. Furthermore, multiple digital signatures
σ1, . . . , σn on respective messages m1, . . . ,mn produced by the same signer A in different con­
texts can be linked to that signer and thus reveal more information about A. For example,
digital signatures used to authenticate different digital transactions of some user can be misused
for profiling purposes.

One may think that the problem of anonymity in PKI-based authentication can be solved with
anonymous certificates, i.e. where during the certification process some CA verifies the identity
A but issues a signature certCA→A on the public key pkA (rather than on (A, pkA)). This is,
however, not enough since such anonymous certificate would still contain the cryptographic
identity of A, namely the public key pkA. Hence, digital signatures issued by A in possession
of an anonymous certificate (pkA, certCA→A) would still remain linkable and traceable to the
cryptographic identity of A.

1.2. Group Signatures: Authentication with Privacy

Digital signatures stand in conflict with privacy, in particular with regard to anonymity of
signers and unlinkability of issued signatures. On the other hand, their unforgeability authen­
ticates the signer as the origin of the signed document. In order to achieve both authenticity
and privacy it appears necessary to decouple public verification procedure from the information
that would uniquely identify the signer. This can be done, for example, by assuming a group of
potential signers and requiring that verification is performed with respect to the whole group.

1.2.1. Group-based Authentication

In the group-based authentication approach users can authenticate themselves on behalf of
some group, rather than on the individual basis. That is, the authentication process does
not disclose any information that could be used to identify some particular user. Since all
disclosed information can only be linked to some group of users, group-based authentication
is a suitable approach for achieving user privacy. With this approach users are considered as
being authenticated if they can provide a proof of the group membership. Note that group­
based authentication is often used for the purpose of access control, where individuals are often
assigned to groups and permissions to access and operate on certain resources is granted based
on these assignments. In our context we are interested however in group-based authentication
techniques applied to digital signatures.

Federal Office for Information Security 20

1. Introduction and Background

1.2.2. Concept of Group Signatures

The concept of group signatures, introduced by Chaum and van Heyst [71], adopts group-based
authentication to achieve privacy of signers against potential verifiers. At a high level, group
signatures implement the following idea: All potential signers are considered as members of
some group. Each signer can issue a signature on behalf of the whole group. Such group sig­
nature is publicly verifiable using the public key of the entire group, which provides anonymity
of the actual signer. However, there exists a dedicated, possibly trusted party, which can
link the group signature to the identity of the signer. We now provide a more detailed view
on the architecture behind group signatures and give a brief comparison to the classical PKI
authentication.

Group Manager and Group Members

The architecture of a group signature scheme consists of the group manager and multiple group
members. The group manager, which can either be a single authority or a coalition of several
entities, is responsible for the initialization of the group, for the admission and in some schemes
also for the revocation of group members. During the initialization process the group manager
chooses own secret key and defines public group parameters containing the group public key.
Once the group parameters are established the group manager can use own secret key to issue
membership certificates to the prospective group members. In some schemes the group manager
can further use own secret key to revoke existing group members from the group.
Each group member is in possession of a membership certificate issued by the group manager.

This certificate represents the secret signing key of the respective group member. That is, each
group member can use it to produce group signatures on arbitrary messages. Any verifier can
publicly check the validity of some issued group signature using the group public key. The
group signature thus proves that the signer belongs to the group.
The distinguished property of group signatures is that the group manager can open group

signatures and identify their signers using the information collected during the admission pro­
cess.
In comparison to ordinary digital signatures, group signatures have extended security goals.

In particular, the unforgeability requirement ensures that only group members are able to issue
valid group signatures. In addition, group signatures provide privacy by requiring that no
other party, except for the manager of the group, should be able to identify the actual signer.
Furthermore, group signatures should remain unlinkable, meaning that no party, except for the
group manager, can link two or more signatures produced by the same signer. Also the opening
procedure performed by the group manager implies security requirements of its own to protect
a group member from malicious accusations of having produced some group signature if this
was not the case.

Differences to Digital Signatures and PKI-based Authentication

Authentication with group signatures reminds of PKI-based authentication, yet with some
significant differences. One can see the role of the group manager as being related to that
of a PKI certification authority. Indeed, the group manager issues membership certificates to

Federal Office for Information Security 21

1. Introduction and Background

new users and in some schemes also revokes their membership. The main difference to PKI
certification is that membership certificates issued by the group manager are confidential and
should never be disclosed by the corresponding group member.
Another difference to traditional digital signatures is that group members do not need to

possess any public keys since verification of group signatures is performed with respect to the
public key of the entire group, defined by the group manager during the initialization procedure.
Observe that group signatures are nonetheless publicly verifiable.
The most important difference between ordinary signatures and group signatures are the

additional privacy guarantees offered by the group signature schemes: namely, their (public)
verification procedure does not leak any information about the actual signer. The verifier is only
convinced that the signer is a valid member of the group. This can be seen as a relaxation of the
authentication goals offered by traditional signatures, which allow verifiers to uniquely identify
the signer of a given signature. In group signatures this property is replaced with the ability
of the group manager to open group signatures. That is, although publicly verifiable group
signatures do not disclose their signers, any verifier is assured that signers can be identified
by the group manager. Note that by requiring the (trusted) group manager to open all group
signatures we would immediately obtain the functionality of traditional signature schemes.
This shows intuitively that group signature scheme have richer functionality and more versatile
applicability than traditional signature schemes.

1.2.3. Applications of Group Signatures

Group signatures find applications in scenarios where verifiers shouldn’t learn the actual identity
of the signer and are willing to accept signatures that can be verifiably attributed to some
member of the group, knowing that the signer can be identified by the group manager, if this
becomes necessary.
The most popular application of group signatures is to conceal organizational structures :

For example, employees of a company may be trusted to sign contracts, issue orders or press
releases, participate in public tenders, and authorize financial transactions on behalf of their
company. If group signatures are deployed for this purpose then the actual identity of the
employee will not be disclosed. However, if some employee abuses this trust, for example by
authorizing a risky transaction or by signing documents that would damage the reputation
of the company, then this employee can be identified using the opening mechanism of the
group signature scheme. That is, the opening procedure offers reactive form of protection for
companies and organizations in case their members abuse the initial trust, granted through
allocation of signing rights. The opening procedure could then trigger punishment actions
against such members, typically leading to revocation of those signing rights.
Further applications of group signatures can be found in anonymous online communications.

For example, group signature schemes can be used in identity escrow schemes [124] (a.k.a. as
group identification [126]), which allows anonymous communication between two parties, unless
one party misbehaves, in which case its anonymity can be revoked by some trusted authority. In
fact, group identification schemes can be seen as an interactive counter-part of group signature
scheme, in which the signature generation process is turned into the identification process that
protects the anonymity of users, who identify themselves to some third parties. Lee, Smart,

Federal Office for Information Security 22

1. Introduction and Background

and Warinschi [126] showed that group signatures can be constructed from group identification
schemes using general transformation techniques that were previously applied, e.g. in [89, 1],
for the conversion of (non-private) identification schemes into traditional digital signatures.
Group signatures find further application in various e-commerce scenarios. For example,

group signatures and underlying techniques have been used in e-cash schemes [174, 136, 63]
aiming to protect privacy of users that perform transactions with electronic money, e.g. to
prevent profiling of those users. Other e-commerce applications of group signatures include
digital auctions [150] for protecting privacy of the bidders and digital voting schemes [62]
where voters should be able to cast votes anonymously. Group signing techniques are of prime
importance for the design of anonymous credential systems [50] used to support privacy in
identity management, and they have further been used in privacy-preserving remote attestation
protocols for computing platforms [44].
Furthermore, group signatures have applications in the domain of digital rights management,

where they can be used for anonymous fingerprinting [46] to protect privacy of buyers of digital
goods, yet allowing identification of distributors of illegal copies. Group signing techniques can
also be found in traitor tracing schemes [118] that help to identify pirates in broadcast-based
content distribution systems.

1.3. Classification of Group Signature Schemes

Group signature schemes can be classified based on their functionality. As previously men­
tioned, common to all such schemes is the ability of the signer, while being a member of the
group, to generate group signatures that can be publicly verified using the group public key and
that do not leak any information about the signer’s identity. The only party that can revoke
signer’s anonymity is the group manager. This basic concept gives rise to different flavors of
group signature schemes, depending on the optional support for the following set of actions:

•	 the ability of the group manager to dynamically admit new group members and/or revoke
previously granted membership,

•	 the ability of the group manager to provide publicly verifiable proofs that some group
signature opens to a concrete signer, and

•	 support for the distribution of the group manager’s duties amongst several entities: (i)
an issuer being responsible for the sole management of the group membership, and (ii)
an opener being equipped with sole rights to open signatures and identify the signer.

Our classification of group signature schemes in the following Sections 1.3.1 to 1.3.4 aims to
address support for the above listed functionality properties and give a high-level overview of
the corresponding algorithms and their roles. This classification will serve as a basis for our
more detailed description of existing group signature schemes and their security properties. We
observe that our classification captures the majority of existing group signature schemes.
In Section 1.3.5 we will also mention several further types of group signature schemes, whose

properties are too specific to be addressed in our classification. We will limit the description

Federal Office for Information Security 23

1. Introduction and Background

of those schemes to the high-level overview of their core properties, without detailing their
constructions in the remaining part of this work.

1.3.1. Static Group Signatures

We start with static group signature schemes, where the number of group members is assumed
to be fixed during the initialization stage. This stage includes the computation of secret signing
keys for each member by the group manager. At a high level static schemes contain algorithms
for key generation, signing and verification, and the opening procedure that identifies the signer.
They involve only one group manager, which takes care of computing the secret signing keys
of prospective group members and of opening their group signatures. Static schemes have the
following four main algorithms as also illustrated in Figure 1.1:

Key generation. The key generation algorithm executed by the group manager will be
denoted by GKg. In static schemes this algorithm generates public key of the group,
private key of the group manager allowing the latter to open group signatures, and a
(personal) secret signing key for each member of the group.

Signature generation. Each group member, in possession of her (personal) secret signing
key can issue group signatures using the group signing algorithm, which we denote GSign.

Signature verification. The validity of an issued group signature on some message can be
checked using the verification algorithm GVrfy. This algorithm is public in that it can be
executed by any party using the public group key generated by the manager.

Opening procedure. In case of dispute the group manager can identify the signer of some
(valid) group signature using the opening algorithm, which we denote by Open. This
algorithm can only be executed by the group manager using the secret key of the latter.

GSign

GKg

GVrfyOpen

secret signing key
of member i

message

group
signature

group public key

group manager’s
secret key

valid / invalidmember i / error

Figure 1.1.: Static Group Signatures

Federal Office for Information Security 24

1. Introduction and Background

Observe that this functionality, described by the algorithms GKg, GSign, GVrfy, and Open,
is in fact basic for all group signature schemes. Other flavors use slight modifications and
extensions of these algorithms as well as new algorithms, which then reflect the additional
functionality offered by those schemes and may have further impact on their security properties.

1.3.2. Dynamic Group Signatures

The requirement to fix the number of group members in advance and generate their signing
secret keys during the initial key generation procedure may not be appropriate for applications
where no prior knowledge about prospective group members exists. In this case it is desirable
to provide support for the on-demand admission of new members by the group manager. This
property is satisfied by dynamic group signature schemes through the additional protocol exe­
cuted between the group manager and the joining group member. In addition to this protocol
the key generation procedure has to be modified such that it does not output any secret signing
keys. Other procedures such as generation of group signatures, their public verification, and
opening by the group manager are performed in the same way as in static schemes.

Key generation. In dynamic schemes the key generation algorithm GKg executed by the
group manager generates only the public key of the group and the private key of the
group manager.

Join protocol. Every dynamic group signature scheme offers a protocol Join executed be­
tween the group manager and the prospective group member. At the end of this protocol
the admitted group member receives its secret signing key whereas the group manager ob­
tains some (secret) information that will be used later to open group signatures produced
by the new member.

This functionality described by five algorithms/protocols GKg, Join, GSign, GVrfy, and Open
is typical for dynamic schemes and is illustrated in Figure 1.2.
Dynamic group signature schemes may further provide support for membership revocation

aiming to prevent former group members from issuing valid group signatures. This is typi­
cally handled through the following additional algorithms, where the group manager, which
is responsible for revocation, publishes some update information that is then used by either
unrevoked members to update their secret signing keys and/or by verifiers as an additional
input to the verification procedure.

Revocation procedure. The group manager can revoke members using the revocation algo­
rithm denoted Revoke. This algorithms typically updates some public group information
to indicate that some member was revoked.

Update procedure. Each of the remaining (unrevoked) group members can update own
secret signing key using a special algorithm, which we call UpdM.

In general, requiring unrevoked members to update their secret signing keys after each revoca­
tion step is not the best solution for practice. Therefore, some group signature schemes handle

Federal Office for Information Security 25

1. Introduction and Background

GSign

GKg

GVrfyOpen

secret signing key
of member i

message

group
signature

group public key

group manager’s
secret key

valid / invalidmember i / error

Join

interactive

Figure 1.2.: Dynamic Group Signatures

membership revocation in a slightly different way: in particular, group signature schemes with
the property of verifier-local revocation, require the group manager to update only public group
information, which in turn is used by verifiers to check locally whether a given signature was
issued by some revoked signer. This property is typically realized using revocation lists, akin
to CRLs used in public key infrastructures.
We also note that membership revocation can be a useful property in static schemes, where

the entire group of members is determined during the key generation procedure. In such schemes
the group manager could still decide to revoke group members at a later stage.

1.3.3. Group Signatures with Verifiable Opening

The distinguished property of group signatures is to preserve anonymity of signers, yet allow
their identification by the group manager through the corresponding opening procedure Open.
This procedure is usually seen as a fall-back mechanism, which should be invoked in (rare)
cases that require identification and possibly subsequent punishment of the signer. The basic
functionality of group signature schemes does not prevent the group manager from falsely
accusing some particular signer of having produced the signature. In particular, the group
manager may not always be trusted to perform the opening procedure in a correct way. In
order to account for these risks many group signature schemes provide additional support for
the public verifiability of the opening procedure. That is the group manager is required not
only to output the identity of the signer but also to provide some publicly verifiable proof that
the output identity indeed belongs to the signer who produced the signature. This functionality
is typically obtained by modifying the opening procedure to output the appropriate proof and
by introducing another verification procedure that can be used to judge whether the identified
signer and provided proof are valid.

Opening procedure. In group signature schemes with verifiable opening the group manager
upon execution of the opening procedure Open on some given group signature outputs

Federal Office for Information Security 26

1. Introduction and Background

not only the claimed identity of the signer but also a proof to support the claim.

Judgement procedure. Verifiable opening implies existence of a public judgement pro­
cedure, denoted Judge, which using public group parameters checks whether the group
manager’s proof output in the opening procedure with respect to the claimed signer is
valid.

Considering the above modifications group signature schemes with verifiable opening contain
at least the algorithms GKg, GSign, GVrfy, Open, and Judge. The main differences with regard
to the opening and judgement procedures are illustrated in Figure 1.3.

GKg

message
group signature

group manager’s
secret key

group public key

(member i, proof) / errorvalid / invalid

Judge Open

Join

secret signing key
of member i

user PKI

user PKI

UKg

secret key of user i

public key of user i

Figure 1.3.: Verifiable Opening and User PKI

One of important elements in the construction of group signatures with verifiable opening is
the use of public key infrastructures (PKIs) to allow for unique identification of signers. Many
schemes with verifiable opening implicitly assume that certified public keys of users are linked
to their membership credentials and that in dynamic schemes users use their PKI-certified key
pair during the execution of the joining protocol with the group manager. Many modern group
signature schemes, however, explicitly define user PKI as part of the group signature setting
and consider its impact on the security of the scheme. In this case a group signature scheme
with verifiable opening may contain the following additional procedure for the generation of
PKI-certified user keys.

User key generation. A group signature scheme with verifiable opening that explicitly uses
a PKI for its users allows each user to generate own private/public key pair using the
appropriate key generation procedure denoted UKg.

This additional UKg procedure can be seen as a simplified way to adopt a user PKI into
the setting of group signatures. In practice, UKg will likely be realized using the common
registration procedure of an user inside some PKI (cf. Section 1.1.2). The management of
the user PKI would then be performed independently from the management of the group. In
particular, the group manager role in the group signature scheme and the certification authority
role in the PKI setting will typically be executed by different parties, independently of each
other.

Federal Office for Information Security 27

1. Introduction and Background

1.3.4. Group Signatures with Distributed Authorities

Another flavor of group signatures comes from the separation of group manager’s duties amongst
different authorities. This helps to mitigate the amount of trust placed into the group manager
and suits applications where such trust is either not available or where a separation of duties
is necessary from the architecture point of view. There exist two main tasks that a single
group manager is supposed to take care of. The first task concerns management of the group
membership. In static schemes this includes generation of secret signing keys, whereas in
dynamic schemes the group manager admits and possibly revokes group members. The second
task concerns the ability of the group manager to identify signers by opening their signatures.
Intuitively, the two tasks can be separated amongst two authorities. This separation is

foundational for group signature schemes with distributed authorities. The first authority, which
is responsible for the management of the group membership is typically called an issuer, whereas
the second authority in possession of opening rights is called an opener. From the functionality
point of view, schemes with distributed authorities assume that the issuer is involved into the
generation of secret signing keys, either during the key generation algorithm GKg (in static
schemes) or during the admission protocol Join (in dynamic schemes), while the opener is the
only party being able to execute the opening procedure Open, as illustrated on the example
of dynamic schemes in Figure 1.4. Such separation of duties is also reflected in the security
properties of these schemes. Namely, the issuer should not be able to identify signers, whereas
the opener should not be able to grant or revoke membership credentials.

GKg

message
group signature

group public key

opening key

valid / invalid

GVrfy

Join

secret signing key
of member i

issuing key

member i / error

Open

Figure 1.4.: Group Signatures with Distributed Authorities

In general, the functionality of distributed authorities can be initialized using the slightly
modified key generation procedure:

•	 Distributed key generation. The distributed key generation algorithm GKg generates
the public key of the group, the private key of the issuer allowing the latter to admit and
possibly revoke group members, and the private key of the opener, allowing the latter to

Federal Office for Information Security 28

1. Introduction and Background

open group signatures and identify the signer. In static schemes such GKg would further
generate individual secret signing keys for all members of the group.

In practice, distributed key generation algorithm may be split in two algorithms, one for the
issuer and another one for the opener, allowing both parties to generate their private keys
locally. An alternative approach would be to require some third trusted party to generate both
types of private keys in advance and then hand the keys to the issuer resp. the opener using
secure channels.

1.3.5. Group Signatures with Special Properties

Here, for completeness, we will mention several types of group signature schemes that do not
fall into our general classification above. These schemes are specialized constructions, whose
functionality and security properties are not directly comparable with the majority of existing
group signature schemes.

Group Blind Signatures

A group blind signature scheme [134] corresponds to a group signature scheme where the signing
process becomes interactive in the following sense: the message m is chosen by a third party
and the generation of the group signature is performed such that the signer does not see the
message in clear, while the third party does not know the identity of the signer. At the end of
the interaction the third party obtains a valid group signature on m whereas the signer does
not receive any information about m nor about the resulting value of the group signature.
Group blind signatures have been proposed for applications where the group signature gen­

eration procedure should remain unlinkable to the message and the issued group signature.
Imagine for example that the role of the signer is performed by some bank and that signed
message corresponds to an electronic coin. The bank is part of a larger financial group. The
generation process of the blind group signature would correspond in this case to the withdrawal
of the electronic cash by some bank’s customer. This customer can use the withdrawn e-cash
in later digital transactions, without revealing information about the bank that issued the coin
and without allowing the issuing bank to keep track on how the customer used the e-cash.

Democratic Group Signatures

In a democratic group signature scheme [137, 143] the dedicated role of the group manager
is eliminated and corresponding tasks are carried out by the members of the group in the
following sense: the admission and revocation of group members is decided and executed jointly
by all (current) members of the group, whereas the opening procedure can be performed on an
individual basis by each group member alone. In this way, democratic group signatures offer
anonymity against non-members only, while allowing each current member to individually keep
track on the other group members’ actions (i.e. issued signatures). Some democratic group
signature schemes can further restrict the execution of the opening procedure to a certain
fraction of group members [185] or allow the signer to specify a subset of group members who
can open the signature in a collective manner [130].

Federal Office for Information Security 29

1. Introduction and Background

An example application of democratic group signatures is a joint venture company, formed by
several, possibly anonymous, parent companies. Each parent company may act in the name of
the joint venture company and can be held accountable for its actions by other parent companies
without relying on some dedicated party.

Mediated Group Signatures

In a mediated group signature scheme [83, 84] the traditional setting of group signatures is
extended with an additional party, called a mediation server. This server assists group members
in the generation process of group signatures and performs revocation of group members on
group manager’s request. In order to issue a group signature the signer identifies himself
to the mediation server and submits a “partial” signature which is then transformed by the
mediation server into a full group signature under the condition that the signer is not revoked.
This approach allows for immediate revocation of group signatures, i.e. the mediation server
prevents generation of group signatures on behalf of revoked members.
Mediated group signatures were introduced in the context of another security property, called

leak-freedom, which is supposed to prevent the signer from convincing third parties of having
generated some given group signature in the past. As an example application, consider an
employee, who is allowed to sign purchase orders on behalf of the company. A misbehaving em­
ployee may attempt to convince some supplier company of having signed a particular purchase
order in order to gain personal benefits in return. The leak-freedom property would prevent
employees from abusing their signing rights.

1.4.	 Intuitive Security Requirements for Group
Signatures

Group signatures extend the basic concept of digital signatures used primarily to achieve au­
thenticity towards anonymity of signers and the ability of the group manager to identify the
signer. Therefore, group signatures not only inherit classical security goals of ordinary digital
signatures, such as unforgeability, but also introduce new requirements. Additional complexity
in handling the security requirements for group signatures stems from the involvement of differ­
ent parties with their own security goals. For example, group members acting as signers wish
to preserve their anonymity against verifiers that in turn must be ensured that valid signatures
were produced by existing group members who can be identified by the group manager. In the
following we will informally discuss various security requirements stated in the early literature
on group signatures, at time when no formal security models for these schemes were available.

1.4.1. Unforgeability of Signatures

The unforgeability property of group signatures is widely similar to ordinary digital signatures
and was already mentioned by Chaum and van Heyst [71] in their seminal paper on group signa­
tures. This property prevents generation of a valid message-signature pair without knowledge
of corresponding private keys. In the context of group signatures this property would assume

Federal Office for Information Security 30

1. Introduction and Background

that secret signing keys of group members (and of group managers) remain unknown to the
potential forger. This requirement typically considers chosen-message attacks, where the forger
may learn valid group signatures for any messages of its choice, produced by any valid group
member of its choice.

1.4.2. Exculpability

The requirement of exculpability was first introduced by Ateniese and Tsudik [17] as another
flavor of unforgeability. It requires that no member of the group and not even the group
manager can produce some valid message-signature pair on behalf of another group member.
Since valid group signatures can be computed by any member of the group, exculpability
offers security with respect to the opening procedure — it ensures that no group member can
be accused of having generated some (valid) group signature if this was not the case. This
requirement is quite strong since it also provides security against malicious group managers.
In schemes with verifiable opening where the group manager outputs an additional proof that
a group signature was produced by the claimed signer, exculpability would prevent the group
manager from cheating in the generation of this proof and thus, offer additional security for
the judgement procedure.

1.4.3. Traceability of Signers

Chaum and van Heyst [71] considered traceability as a property of group signatures allowing
the group manager to identify the signer of a given signature. This property can also be
seen as a security requirement to ensure that any valid group signature must be openable by
the group manager. Hence, traceability prevents attacks where some output group signature
passes the verification procedure, yet its opening by the group manager fails. In this respect
the term “failure” may have two meanings — either the opening procedure does not output
any identity at all, or it outputs some identity, which is, however, not the identity of the actual
signer. Traceability thus protects interests of the group manager and potential verifiers of group
signatures.

1.4.4. Coalition Resistance

Ateniese et al. [11] extended the requirement of traceability towards a stronger attacker model,
where they considered coalitions of malicious group members combining their secret signing
keys to produce an untraceable group signature. Coalition resistance guarantees that if some
group signature passes the verification procedure then it is always openable to at least one
member of the coalition. This requirement thus protects other (honest) group members from
false accusations and further provides similar guarantees to the group manager and verifiers as
the previous traceability requirement.

Federal Office for Information Security 31

1. Introduction and Background

1.4.5. Protection against Framing Attacks

A slightly different formulation of coalition resistance is protection against framing attacks,
first considered by Chen and Pedersen [73]. In a framing attack a coalition of malicious group
members works together with the malicious group manager to generate a group signature, which
passes the verification procedure, yet opens to another member of the group. These attacks
are typically relevant for schemes with verifiable opening where the judgement procedure could
accept some falsely accused group member as a signer. Hence, protection against framing
attacks can be seen as an individual security goal of any (honest) group member.

1.4.6. Anonymity of Signers

Chaum and van Heyst [71] considered anonymity of signers as a core privacy property of group
signatures. This requirement implies that no party except for the group manager is able to
identify the signer of some given group signature. Adversaries against anonymity could be not
only potential verifiers but also other members of the group. The latter makes sense if the group
includes at least three members so that any member who did not sign some particular message
would still have to decide, which of the at least two remaining group members produced the
signature.

1.4.7. Unlinkability of Signatures

The requirement of unlinkability, addressed by Bellare, Micciancio, and Warinschi [22], is related
to anonymity in that it prevents correlation amongst signatures produced by the same signer.
An adversary against unlinkability should not be able to decide whether two or more group
signatures were signed by the same member of the group. It is also possible to consider other
group members as potential adversaries against the unlinkability with similar restrictions on
the minimal number of group members as in case of anonymity. Clearly if the adversary can
break anonymity and identify the signer then this adversary could also link group signatures
produced by that signer.

1.5. Group Signatures and Provable Security

In modern cryptography it is important to argue about security of cryptographic schemes by
giving convincing security proofs. In addition to the efficiency considerations and practicality
of the scheme, existence of a valid security proof belongs to the main factors influencing the
deployment of the scheme in practice. Security proofs require some suitable formalism that is
able to capture the desired functionality of the scheme and define its intuitive security goals.
An abstract description of the scheme’s functionality, including its algorithms, their inputs and
outputs, is usually referred to as the syntax of the scheme. By combining this syntax with
formal specification of security goals one obtains the so-called security model. That is security
proofs are always given with respect to a specific security model, meaning that changes in
the security model may invalidate the proofs. Security models can change for many reasons.
For example, extension of the functionality of the scheme, such as extension of static group

Federal Office for Information Security 32

1. Introduction and Background

signature schemes with dynamic behavior, will ultimately result in the update of the security
model to cope with the new properties and security threats that these properties introduce.
In fact, our classification of group signature schemes according to different functionalities and
flavors will contain respective security models and definitions.

1.5.1. Computational Security and Adversarial Experiments

In the following we will provide a high-level intuition on how security in modern cryptographic
schemes is modeled. Security definitions typically assume an adversary A seeking to break
some security property X of a cryptographic scheme Π. In practice, A will likely be required to
compute a solution for some — presumably hard — problem and therefore require computing
power to perform its attack. The notion of computational security assumes that this power
is not infinite, yet also not constant, and may increase in time along with the progress in the
area of computing technology. This stands in contrast to the notion of information-theoretic
security, which considers unbounded adversaries with infinite computing resources. Although
information-theoretic security is the strongest form of security a scheme can achieve, it is,
usually, not practical. In the setting of computational security adversaries A are modeled
as probabilistic, polynomial-time (PPT) algorithms. The running time of A is polynomially
bounded in the (public) security parameter 1κ , κ ∈ N, meaning that A accomplishes its attack
within time a · κc , for some suitable constants a, c > 0. In addition, all algorithms of the
scheme Π are assumed to have polynomial running time in the same parameter 1κ, so that
security properties of Π should hold in the presence of adversaries that have at least the same
computational power as the computing devices that will execute the algorithms of Π. By
carefully increasing the security parameter 1κ it is possible to keep pace with the technology
progress and protect security of the scheme as time passes by.

The actual security property X of the cryptographic scheme Π is usually defined through
some probabilistic experiment ExptX

Π,A(1
κ) which interacts with the adversary A and outputs 1

if the attack of A was successful and 0 otherwise. Depending on the property X the experiment
ExptX This information can be given to Π,A(1

κ) can provide A with some further information.
A either directly as input or it can be obtained by A from the experiment by interaction.
The latter means that A can submit queries to the so-called oracles O(·) the behavior of
which is fully defined by the experiment, e.g. upon submitting a query q of particular form
the experiment may provide A with the output of O(q). For the definition of security it is
important to consider probability with which the experiment ExptX theΠ,A(1

κ) outputs 1, i.e.
attack of A was successful. A cryptographic scheme Π is usually said to satisfy some property
X if Pr[ExptX = The term “almost Π,A(1

κ) 1] is “almost identical” to some target probability p.
identical” used here depends on the security parameter 1κ and is typically related to the notion
of a negligible function.

Definition 1.1 (Negligible Function) A function c : N → R is said to be negligible if for
every positive polynomial poly(·) there exists an integer N ∈ N such that for all integers n > N :
c(n) < 1 . ♦

poly(n)

Federal Office for Information Security 33

1. Introduction and Background

To summarize, in the computational security setting scheme Π is said to satisfy some property
X if the probability of a successful attack over all PPT adversaries A given by | Pr[ExptX

Π,A(1
κ) =

1] − p| is negligible (in κ). The target probability p is property-specific but usually takes values
in 0 or 1

2 . For example, if for a successful attack A should solve some computational problem
then p is typically set to 0, e.g. if A is required to forge a group signature. On the other hand,
if A should solve some decision problem then p is typically set to 1

2 , in order to account for the
chance of A to guess the result, e.g. if A is required to decide whether a given group signature
was produced by signer i0 or signer i1 while the actual signer ib was picked at random (via bit
b ∈R {0, 1}).

1.5.2.	 Formal Security Requirements — Anonymity, Traceability,
Non-Frameability

The informal security requirements for group signatures, discussed in Section 1.4, can be for­
malized using adversarial experiments within the setting of computational security. However,
since the list of intuitive security notions is rather large, defining a separate experiment for each
such notion and later proving that some group signature scheme provides all security notions is
not very handy. For this reason, it is advisable to keep the security model simpler and look for
relationships amongst the informal security notions allowing for formal definitions that would
define several such notions using one adversarial experiment. Furthermore, formalizing the
same security goal for different types of schemes could be tricky since each type has its own
functionality that must be considered in the adversarial experiments. There are no guidelines
on how informal security requirements should be mapped to formal definitions. The integration
of several informal notions into one formal security definition is thus an intuitive process that
could lead to different security models for the same type of schemes.
The first formal security model for group signatures was introduced by Bellare, Micciancio,

and Warinschi [22], who considered static schemes. This model evolved over the years to
capture other types of group signature schemes and/or to address new properties, both from
the functionality and security point of view. Today, there exist several formal models for
different types of group signature schemes, aiming at related notions of security. One of the
goals of our work is to provide a cleaner view on these definitions, identify their relationships
and differences, and present them in a way that would allow for a comparative security analysis
amongst different (types of) group signature schemes. In the following we describe at a high
level three security requirements — anonymity, traceability, and non-frameability —
that we will later formally define for each group signature type. Table 1.1 shows how these
requirements capture the intuitive security goals of unforgeability of signatures, exculpability,
traceability of signers, coalition resistance, protection against framing attacks, anonymity of
signers, and unlinkability of signatures from Section 1.4.

Anonymity

The formal security goal of anonymity is supposed to address the two informal privacy notions
of anonymity and unlinkability. The adversarial experiment will require from the adversary to
decide whether some group signature was produced by signer i0 or signer i1. We will provide

Federal Office for Information Security 34

1. Introduction and Background

Formal Security Requirements Intuitive Security Requirements

Anonymity
Traceability
Non-Frameability

Anonymity of Signers, Unlinkability of Signatures
Traceability of Signers, Coalition Resistance
Unforgeability of Signatures, Exculpability,
Coalition Resistance, Protection against Framing Attacks

Table 1.1.: Relationship between Formal and Intuitive Security Requirements

corresponding definitions of anonymity for all types of group signatures, that is for static
schemes, for dynamic schemes, possibly with (verifier-local) revocation, for schemes supporting
verifiable opening procedure, and for schemes with distributed authorities. In general, we
will consider two flavors of anonymity differing in the amount of information provided to the
adversary in the course of its attack. Our first flavor, called insider anonymity will allow
adversarial control over all members of the group by disclosing their secret signing keys, except
for the signers i0 and i1. In schemes where authorities are distributed into the issuer and the
opener we will also provide the adversary with the secret key of the issuer, who according
to the separation of duties principle should not be able to identify signers. Our second flavor,
denoted full anonymity will provide the adversary with secret signing keys of all group members,
including i0 and i1. As we will see many existing group signature schemes satisfy this stronger
definition of anonymity.

Traceability

The formal security goal of traceability will address the intuitive requirement on the traceability
of signers, possibly in the presence of coalitions of malicious group members. Also this goal will
be defined for all types of group signatures. The adversarial experiment modeling traceability
will require from the adversary to output a group signature that passes the verification proce­
dure but for which the opening procedure results in a failure. In schemes with verifiable opening
the experiment will be extended to address security of the judgement procedure so to make sure
that if the opening procedure does not fail then the output proof regarding the identity of the
claimed signer will always be accepted. In general, we will consider two flavors of traceability.
In the first flavor, called insider traceability, the adversary will be given secret signing keys of
all group members (modeling their potential coalitions). This flavor guarantees traceability of
signers against honest group managers. In group signature schemes with distributed authorities
the adversary will furthermore be given the secret key of the opener. In this way the experi­
ment will ensures protection of the issuer — only the issuer should decide whom to admit to
the group and the secret signing keys issued in the admission process may not be misused for
the generation of signatures that cannot be opened. Our second flavor, denoted full traceability
will additionally provide the adversary with the entire secret key of the group manager. As we
will see only static group signature schemes where potential group members are determined in
advance and receive their secret signing keys during the key generation procedure can satisfy
this stronger requirement.

Federal Office for Information Security 35

1. Introduction and Background

Non-Frameability

The formal security goal of non-frameability will address intuitive requirements of unforgeability
and exculpability, and further protect signers against framing attacks, possibly in the presence
of coalitions of malicious group members and the manager of the group. In the corresponding
adversarial experiment the adversary must come up with a group signature that passes the
verification procedure but for which the opening procedure outputs an identity i∗ of some
group member who was not involved in the generation of that signature. Also for this notion
we will consider two flavors, which will be defined for all types of group signatures. The
first flavor, called insider non-frameability, will allow the adversary to obtain secret signing
keys of all group members, except for the member with identity i∗ . The adversary can still
obtain valid signatures produced by i∗ to model chosen message attacks, that are typical in the
security definitions of digital signatures. In schemes with verifiable opening the experiment will
be extended to ensure protection of the judgement procedure, i.e. to eliminate false accusations
against i∗ through the potential falsification of an opening proof. The second flavor, denoted
full non-frameability, will furthermore provide the adversary with the secret key of the group
manager. In particular, in schemes with distributed authorities the adversary will be given
secret keys of the issuer and the opener. This models potential coalitions of malicious group
members with the group manager and considers protection against framing attacks performed
by the latter. In contrast to full traceability, which can only be satisfied by static schemes, the
notion of full non-frameability can be fulfilled by dynamic group signature schemes as well.

1.5.3. Group Signatures and Quantum Computers

In this work we focus on group signature schemes that can be securely and practically de­
ployed in modern digital systems. The assumed adversarial setting considers polynomial-time
adversaries in the standard model of computation based on universal (polynomial-time) Turing
machines. This model excludes computations on quantum computers, for which a more general
computation model has been defined, e.g. [82, 19]. Therefore, schemes described in this work,
in particular those that admit efficient realizations in practice, are based on specific hard prob­
lems from number theory such as integer factorization problem or discrete logarithm problem.
These problems, however, can be efficiently solved on quantum computers, for example using
the well-known algorithm of Shor [169].
A recent line of research in cryptography — Post-Quantum Cryptography (see e.g. [29]) — is

dedicated to the construction of cryptographic schemes that would remain secure in the future,
once quantum attacks become feasible in practice. Security of such schemes requires other
hard problems than those that can efficiently be solved by the existing algorithms from [169].
Current techniques for building post-quantum secure schemes typically rely on either coding
theory, multivariate cryptography, hash-based approaches, or lattices. Especially, the area of
lattice-based cryptography, originated in the work of Ajtai [8], seems to be most promising due
to the rich algebraic structure of lattices.
The so-far only group signature scheme, designed to resist quantum attacks, was proposed by

Gordon, Katz, and Vaikuntanathan [103] based on lattices. This scheme, however, is more of
theoretical than practical interest; in particular, it cannot compete with existing (non quantum-

Federal Office for Information Security 36

1. Introduction and Background

resistant) group signature schemes in terms of efficiency and has somewhat limited functionality
(e.g. does not offer dynamic support). Nonetheless, post-quantum group signatures represent
an important area of research that is likely to become of high practical relevance in a long term.

1.6.	 Related Approaches for Authentication with
Privacy

In this section, we describe security protocols and notions that, although designed for a different
purpose, share some properties with group signature schemes. Not surprisingly, they build on
similar cryptographic primitives and follow resembling design strategies.

1.6.1. Anonymous Signatures

The notion of anonymous signatures, introduced by Yang et al. [186], aims to achieve anonymity
in the traditional setting of digital signatures, where the private key of a signer is used to
produce signatures that are then verified using the signer’s public key. At first sight, achieving
anonymity in this setting may sound contradictory to the anticipated authentication goals of
signature schemes. The crucial observation here is that the verification procedure of a signature
scheme requires as input the public key of the signer and the corresponding message. In the
presence of system-wide known public keys there is hope to keep the signer anonymous as long
as messages are not publicly disclosed. These ideas were formulated in [186], assuming that
signed messages have sufficiently high entropy to prevent otherwise unavoidable attacks, by
which the anonymity adversary would guess the message and try out different public keys until
the right public key allowing successful verification of the given signature is found.
The original definitions of anonymity for digital signatures from [186] were simplified by Fis­

chlin [91] and adopted to address the potential exposure of secret signing keys. He also described
a general transformation that adds the anonymity property to any unforgeable digital signa­
ture scheme, while the original work in [186] showed more concrete constructions of anonymous
signatures using number-theoretic constructions based on integer factorization and discrete log­
arithms. A slightly different concept for anonymous signatures was introduced independently
in [21, 166, 189], where the assumption on high entropy of messages was traded against partial
disclosure of signatures, i.e., by splitting the signature in two or more distinct components of
which at least one is withheld. For these revised definitions of anonymity [21, 166, 189] provided
several general transformations, achieving anonymity for arbitrary signature schemes, and [166]
showed in addition a more concrete construction in the setting of bilinear maps.
The anonymity property of anonymous signatures differs, however, from the anonymity pro­

vided by group signatures in many ways. While group signatures aim to protect anonymity of
the signer against verifiers, yet allowing the latter to perform the verification procedure, anony­
mous signatures lose their anonymity property as soon as the entire message-signature pair is
revealed. This information, however, is required to perform the verification procedure. Inter­
estingly, techniques underlying anonymous signature schemes for high entropy messages have
recently been used in the constructions of group signatures, e.g. [31], to achieve a somewhat
better efficiency in comparison to many earlier schemes.

Federal Office for Information Security 37

1. Introduction and Background

1.6.2. Anonymous Credentials

An anonymous credential system (ACS), originated in the work of Chaum [69], is a cryp­
tographic scheme that provides strong authentication of users to verifiers, while protecting
privacy of the former. ACS users receive credentials from organizations and treat them as their
own secret. ACS credentials are typically given through certificates that organizations issue on
a unique identity of the user, i.e., the identity under which this user is known to that particular
organization. They resemble, in some sense, paper-based credentials like passports, driver’s
licenses, cinema tickets, or proofs of qualification, and suit as replacement of those credential
types in the virtual world, e.g., on the Internet.
The core functionality of an ACS system is to allow users to prove possession of valid cre­

dentials without revealing their (certified) identities. Early ACS schemes, e.g. [69, 79, 135],
were not very efficient or required additional (trusted) parties to assist the execution of ACS
protocols [70]. Modern ACS schemes, designed with both security and efficiency in mind, were
proposed only in the last decade [54, 56], improved and extended in [57, 48, 51, 52]. Some ACS
offer efficient support for the revocation of issued credentials, e.g. [51, 52]. Currently, ACS are
finding their ways into practice [47]: for example, Bichsel et al. [30] implemented the scheme
from [54] on a smart card and a more general implementation with direct integration into an
access control system is currently being developed as part of the idemix credential system [50]
(see also http://idemix.wordpress.com/).
ACS schemes have several important security properties: for example, credentials should be

unforgeable to prevent users from claiming possession of credentials that were never issued; ACS
protocols for proving possession of valid credentials should be further unlinkable to guarantee
user’s privacy against third-party verifiers and even colluding organizations. As ACS are multi­
user systems, it should not be possible for malicious users to combine their ACS credentials
to create a new one. These requirements are satisfied by all modern ACS systems. The
collusion-resistance property is especially important for ACS schemes that support certification
of attributes in addition to unique user’s identity, e.g. [48]. Attributes, such as age or address
information, allow for a finer form of access control. As it is not possible to prevent malicious
users from transferring their private credentials to other users, some ACS systems discourage
this behavior using the concept of “all-or-nothing sharing”, where malicious users can transfer
their proving rights only by disclosing some secret information about themselves. For example,
the concept of “one-show credentials” in [54] provides user privacy for at most one use of
the ACS credential. ACS systems supporting revocation [51, 52] aim further to prevent users
from proving possession of credentials if these were revoked by respective organizations. The
challenge in this case is to allow revocation without compromising user privacy.
ACS schemes can be used for user authentication and access control, thereby preserving pri­

vacy of user credentials. An anonymous credential can thus be used to prove membership of
a user in some organization (group), which parallels the goals of group signature schemes, i.e.,
organizations issuing ACS credentials to the users could play the role of group management au­
thorities. The main difference between ACS schemes and group signatures is the missing ability
of ACS organizations to identify users based on ACS protocol executions. In group signatures
such identification is realized using the opening procedure. Thus, ACS schemes offer stronger
privacy guarantees in this respect. Nonetheless, constructions of ACS schemes often share sim-

Federal Office for Information Security 38

http://idemix.wordpress.com/

1. Introduction and Background

ilar techniques that are used in constructions of group signatures and revocation mechanisms
developed for ACS schemes can often be adopted to realize dynamic group signatures with
revocation support and vice versa.

1.6.3. Affiliation-Hiding Authentication

Affiliation-hiding (AH) is a property of privacy-preserving authentication protocols such as
secret handshakes [18, 184, 64, 180, 179, 111, 14, 113, 142] and, more generally, affiliation­
hiding key establishment protocols [109, 110, 141, 140, 139]. These schemes hide user identities
by means of group authentication, but in contrast to group signatures they also hide the actual
groups (affiliations) of participants: whenever the affiliations of both protocol participants
match, the authentication is successful, whereas, in all other cases, the protocol terminates
without leaking any information about the groups, except for the fact that they do not match.
In many AH protocols, a successful authentication session results in a shared secret key that
participants can use to protect their subsequent communication. In this light, AH protocols
are interactive and bear high potential for protecting privacy in online communications. AH
protocols further support efficient revocation of group membership, which is usually performed
by respective group authorities, who manage their own groups independently of each other.

AH protocols can be of two flavors: linkable or unlinkable. In linkable protocols, such as
[18, 64, 180, 110, 141, 140, 139], users communicate using pseudonyms for which they hold
corresponding group membership credentials. These pseudonyms can be revoked by the group
authorities, i.e., put into revocation lists which are distributed in an authenticated manner.
Linkable protocols are usually more efficient than unlinkable protocols. In unlinkable proto­
cols [14, 111, 179, 113], in order to prevent any correlation amongst sessions of the same user,
complex group management techniques are deployed or some security compromise is taken into
account: For example, [14] does not support revocation, [111] needs synchronization of revo­
cation epochs amongst members, [179] combines group signatures with broadcast encryption
techniques, while [113] combines group signatures with verifier-local revocation and private
conditional oblivious transfer schemes.

Several AH protocols, e.g. [141, 142], aim to protect privacy of group members against
respective group authorities, in particular to ensure that group members remain anonymous
during the protocol execution. Some recent protocols, e.g. [41, 112, 138, 140, 139], offer efficient
solutions for handling multiple group membership credentials in a single protocol session, which
considerably improves the practicality of AH schemes.

Although techniques from group signatures have also been used in the construction of AH
protocols, the two concepts have one significant difference: in group signatures the verification
process, i.e., the check whether the signer belongs to a claimed group or not, is a public operation
that can be performed by any verifier in possession of the group public key on his own, whereas
in AH protocols only group members are entitled to verify each other’s group membership via
interaction.

Federal Office for Information Security 39

1. Introduction and Background

1.6.4. Blind Signatures

With blind signatures, introduced by Chaum [68], signatures can be obtained on messages
that remain undisclosed to the signer. The resulting signature is publicly verifiable using the
signer’s public key and the message. That is, blind signature can be seen as an analogue to
a closed carbon copy envelope that contains some messages, which is signed without opening
the envelope. The signature generation process requires interaction between the signer and the
user, who is in possession of the message that should be signed.
The typical properties of blind signatures are unforgeability and blindness (sometimes called

unlinkability). In particular, the latter is a privacy property by which signers should not be
able to link any message-signature pair to the interaction in which that signature was issued.
This property also means that signers do not obtain any information about messages during the
signature generation procedure. Applications of blind signatures include e-cash and e-voting
systems, and they have also been used in the construction of anonymous credential systems and
some affiliation-hiding authentication protocols, where blind signatures are mostly used for the
generation of credentials that users obtain from respective management authorities.
Since the seminal works of Chaum [68], efficient constructions were proposed in different

cryptographic settings, e.g. using discrete logarithms [161, 3], based on integer factorization [23,
53, 122, 123], in the setting of bilinear maps [33, 155, 4], using lattices [164], and from general
hardness assumptions [114, 90, 107, 5, 98]. These schemes have varying efficiency, for example
schemes in [68, 33, 90, 122, 4, 98] achieve optimal communication complexity of two rounds.
Some ideas underlying blind signatures have also been extended to group signatures. In

particular, Lysyanskaya and Ramzan [134] introduced the notion of group blind signatures
aiming to adopt the blindness property to group signature schemes. As an application they
proposed an e-cash system where multiple banks can distribute anonymous and untraceable
digital coins.

1.6.5. Direct Anonymous Attestation

Direct anonymous attestation (DAA) [175] is a cryptographic protocol designed primarily to
enhance user privacy within the remote attestation process of computing platforms, which has
been adopted by the Trusted Computing Group (TCG, http://www.trustedcomputinggroup.
org/) in its latest specification. The remote attestation process follows roughly the following
concept: a tamper-resistant hardware chip, often referred to as the Trusted Platform Module
(TPM), is embedded into the computing platform (e.g. a laptop or smartphone) during the
manufacturing process and is initialized by an issuing authority, which installs its private key
into all issued TPMs. TPMs can certify local configurations of computing platforms and are
important for the remote attestation process, in which some verifier wishes to remotely check
whether the computing platform is equipped with a TPM and has been configured to match
some pre-defined policy. This process is realized through a challenge-response protocol, where
the verifier’s challenge is authenticated by the TPM together with the local configuration of
the platform. The tamper-resistance of the TPM protects against impersonation attacks. In
addition, the process requires protection of privacy, in particular different attestation sessions
should remain unlinkable.

Federal Office for Information Security 40

http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/

1. Introduction and Background

The DAA solution, originated by Brickell, Camenisch and Chen [44] specifies how issuers,
hosts, TPMs, and verifiers interact to cope with the given problem in a privacy-preserving way,
i.e., verifiers cannot recognize TPMs across different attestation sessions. Moreover, TPMs can
be efficiently revoked by the issuing authorities. The DAA approach doesn’t require any trusted
third parties (unlike, for example, the Privacy CA approach used in earlier TCG specifications).
The original work on DAA has further been extended, e.g. in [173, 129, 43, 72], however TCG
specification of DAA is widely based on the initial version from [44].
DAA uses techniques that are similar to those utilized in group signatures and other privacy­

preserving authentication schemes such as anonymous credential systems. In general, the TPM
is in possession of a private credential, which it receives from the issuer, and uses this creden­
tial in the remote attestation process without leaking information that would allow the verifier
to link two distinct sessions to the same TPM. On the other hand, the user of the comput­
ing platform has freedom to decide whether unlinkability of its attestation sessions should be
dropped.
In fact, attestation process in DAA has similar goals to group signatures but one important

difference: in DAA unlinkability of attestation sessions also guarantees anonymity of TPMs and
none of the parties in the system is able to identify which TPM participated in the procedure.
That is, the opening procedure, which is inherent to group signatures, is not available in the
DAA setting.

1.6.6. Ring Signatures

With ring signatures, introduced by Rivest, Shamir, and Tauman [162], users in possession of
public keys can create lists containing public keys of other users and produce signatures that
would not leak any information about the original signer, except that the signer’s public key
is part of the composed list. A ring signature scheme should be unforgeable, meaning that
generation of ring signatures without knowledge of at least one secret key corresponding to one
of the public keys in the list must remain infeasible. Ring signatures offer privacy since the
actual signer can remain anonymous and even unlinkable, that is no verifier should be able to
determine which public key in the list belongs to the signer of the message or whether two ring
signatures were produced by the same signer. For example, ring signatures can be used to leak
insider information to the press in a manner that authenticates the source as a knowledgeable
insider but protects its identity.
The first ring signature scheme in [162] was constructed using special techniques that em­

ployed trapdoor permutations. Several ring signature schemes were constructed later, e.g.
[6, 108, 37, 97, 183, 85, 76, 66], based on different number-theoretic assumptions. The original
security definitions from [162] were strengthened later by Bender, Katz, and Morselli [27] to
take possible leakage of private keys and the possibility of insider attacks into account, that are
sometimes considered in group signature schemes.
Some ring signature schemes offer additional properties such as linkability [132, 177, 176]

and verifiability [125, 188]: in a linkable scheme several signatures from the same signer can
be linked; in case of verifiability the signer himself – and nobody else – can issue a proof of
having produced the signature. Additionally, several schemes, e.g. [42, 183, 78], distributed the
signing abilities amongst multiple signers by requiring their collaboration during the signature

Federal Office for Information Security 41

1. Introduction and Background

generation process.
The inherent limitation of ring signatures is that the length of the signature is not constant,

which weakens their applicability in practice. The most efficient scheme in that respect was
proposed by Chandran, Groth, and Sahai [66]. In this scheme, the length of ring signatures is
sub-linear in the number of public keys in the list, whereas all previous schemes experienced
linear increase of the signature length.
The properties of ring signatures are very similar to group signatures: both schemes rely on

group-based authentication, i.e., by viewing the list of public keys in ring signatures as some
sort of a group of potential signers. However, in ring signatures signers can decide freely which
public keys to include into their list. Moreover, the distinguishing property of ring signatures
is that the anonymity is guaranteed unconditionally, i.e., no party can identify the signer. This
differs from group signatures whose signers can be identified through the corresponding opening
procedure.

1.6.7. Traceable Signatures

The notion of traceable signatures, introduced by Kiayias, Tsiounis, and Yung [117], can be
seen as a special type of group signatures with a slightly different traceability concept: the
group manager is in possession of a special tracing trapdoor for each member of the group. By
revealing the trapdoor for some user i, all signatures issued by i in the past can be identified
independently by other parties, called tracing agents. For this purpose, tracing agents link
all signatures of i using the given trapdoor. On the other hand, tracing agents do not learn
the actual identity of i. That is, traceable signatures offer anonymity (through the group­
based authentication approach) and unlinkability of signatures, while the latter can be revoked
through the publication of the appropriate trapdoor. The group manager is the only authority
which can identify the actual signer i through the corresponding opening procedure, as in group
signatures. Furthermore, a signer of some traceable signature can prove that he indeed was
the signer. Such signature claiming procedure is inherent to traceable signatures and it allows
other parties to check whether a signature stems from a certain user without asking the group
manager to execute the opening procedure for the given signature. For example, the scheme
from [117] allows signers to provably claim own signatures without keeping the state for each
generated signature and without involvement of the group manager.
Traceable signatures can be used to implement an anonymous auction protocol with open

bids. That is, bidders submit signed bids and the signature of the highest bid is opened to
determine the winner of the auction. Bidders can use the claiming functionality to prove the
ownership of submitted bids and the tracing property can help to identify bids submitted by
misbehaving bidders.
The first traceable signature scheme was proposed in [117] and improved later in [28]. Sev­

eral more efficient schemes [100, 74] have been proposed thereafter. In particular the scheme
from [75] improved the efficiency of the tracing process by tracing agents. Variations of traceable
signatures also include schemes, e.g. [182, 181], where the tracing process cannot be performed
by a single tracing agent but requires collaboration of several agents and by this decreases the
risk of an abuse of the tracing procedure.
A traceable signature scheme can be seen as a group signature scheme with the additional

Federal Office for Information Security 42

1. Introduction and Background

property that signatures of one user can be identified without the need of opening all signatures
in the system. Indeed, as mentioned in [117], the group manager in a group signature scheme
can open all signatures and by this identify all signatures belonging to the same signer. This,
however, would breach the privacy of all other group members and is, therefore, undesirable.
Nonetheless, the technical realization of traceable signatures uses techniques that are also used
in constructing group signatures. In particular, the tracing process has some similarities to
the verifier-local revocation approach offered by some group signature schemes. The signature
claiming procedure is, however, unique to traceable signatures. In fact, some variations of group
signature schemes explicitly aim to prevent the ability of the signer to claim own signatures,
for example through the additional security requirement called “leak-freedom” in the scheme
by Ding, Tsudik, and Xu [83, 84].

Federal Office for Information Security 43

2.	 Group Signatures: Definitions and
Security Models

The classification of group signature schemes assumes four main types: static schemes, dy­
namic schemes (possibly with revocation), schemes with verifiable opening procedure (possibly
with explicit consideration of user PKI), and schemes where the role of the group manager is
distributed between the issuer and the opener. For each type we will formally define the syntax
of corresponding algorithms and their correctness requirements together with the three formal
security notions of anonymity, traceability, and non-frameability.

2.1.	 Static Group Signature Schemes

In this section we introduce formal definitions for static group signature schemes, where the
number of group members n ∈ N is fixed in advance. Our definitions model the basic func­
tionality of such schemes, namely: generation of secret and public keys, generation of group
signatures by members of the group, public verification of group signatures, and their opening
through the corresponding manager of the group. Our description of the algorithms follows
the model for static group signatures proposed by Bellare, Micciancio, and Warinschi [22] with
some slight modifications.

2.1.1. Algorithms of Static Schemes and Their Correctness Property

Definition 2.1 (Static Group Signature Scheme) A static group signature scheme Γ =
(GKg, GSign, GVrfy, Open) consists of four polynomial-time algorithms:

Key generation. The randomized group key generation algorithm GKg takes as input the
security parameter 1κ , κ ∈ N, and the total number of group members n ∈ N, and returns
a tuple (gpk , gmsk , gsk), where gpk is the group public key, gmsk is the group manager’s
secret key, and gsk is an n-element vector of keys with gsk [i] being the secret signing key
of member i, 1 ≤ i ≤ n.

Signature generation. The randomized group signing algorithm GSign takes as input a
secret signing key gsk [i] and a message m, and returns a group signature σ.

Signature verification. The deterministic group signature verification algorithm GVrfy takes
as input the group public key gpk , a message m, and a candidate group signature σ for
m, and returns either 1 (to indicate that the signature is valid) or 0 (to indicate a failure).

45

2. Group Signatures: Definitions and Security Models

Opening procedure. The deterministic opening algorithm Open takes as input the group
manager’s secret key gmsk , a message m, and a signature σ, and returns either a signer’s
identity i ∈ [1, n] or 0 (to indicate a failure). ♦

Note that the opening procedure is defined independently of the verification procedure. This
means that Open(gmsk , m, σ) can be potentially executed on a message-signature pair (m, σ)
for which the verification procedure would fail. In practice, however, it is likely that the Open
algorithm will check whether GVrfy(gpk , m, σ) = 1 before attempting to identify the signer i.
Nevertheless, it is left up to the scheme Γ to decide whether the opening procedure should
perform this check.
A static group signature scheme Γ should satisfy the following correctness property. Its

first condition guarantees that group signatures produced by group members can be verified
successfully, while its second condition ensures correct signer identification by the manager of
the group.

Definition 2.2 (Correctness : Static) A group signature scheme Γ = (GKg, GSign, GVrfy,
Open) is correct if for all κ, n ∈ N, all keys (gpk , gmsk , gsk) ← GKg(1κ, n), all identities
i ∈ [1, n], and all messages m ∈ {0, 1}∗ :

GVrfy(gpk , m, GSign(gsk [i],m)) = 1 and Open(gmsk , m, GSign(gsk [i],m)) = i.

♦

Remark 2.1.1 In general, static group signature schemes fix the entire number of group mem­
bers and generate their secret signing keys in advance during the key generation procedure.
Nevertheless, static schemes may also offer revocation support, allowing the group manager to
only remove group members (but not to add new members). In this case algorithms of static
schemes can be updated and extended with additional algorithms for handling the revocation
procedure. We do not describe these optional algorithms at this point. Instead, we refer the
reader to Section 2.2.2, where we provide a more detailed discussion on revocation handling and
corresponding algorithms in the context of dynamic group signature schemes. Nevertheless, we
notice that those algorithms and their parameters can also be applied to static schemes.

2.1.2. Adversary Model and Oracles for Static Schemes

Our formal definitions of security for static group signature schemes Γ = (GKg, GSign, GVrfy,
Open) will be provided through probabilistic experiments ExptΓ,A(1

κ) as mentioned in Section
1.5. In general, A will be given access to (a subset of) the following three oracles:

Corruption oracle. The corruption oracle Corrupt(·) takes as input an identity i ∈ [1, n] and
returns the secret signing key gsk [i].

The corruption oracle Corrupt(·) models attacks in which the adversary A can form coalitions
of group members aiming to break some security property of the scheme.

Federal Office for Information Security 46

2. Group Signatures: Definitions and Security Models

Signing oracle. The signing oracle GSign(gsk [·], ·) takes as input an identity-message pair
(i, m) with i ∈ [1, n], and returns the output of the group signing algorithm GSign(gsk [i],
m).

The signing oracle GSign(gsk [·], ·) models chosen-message attacks by which A may lure some
group member into signing a message, hoping that this signature will reveal information that
is useful for the attack.

Opening oracle. The opening oracle Open(gmsk , ·, ·) takes as input a message-signature pair
(m, σ), and returns the output of the opening algorithm Open(gmsk , m, σ).

The opening oracle Open(gmsk , ·, ·) models chosen-signature attacks by providing A access to
the opening procedure of the scheme for arbitrary message-signature pairs.

2.1.3. Anonymity Definitions for Static Schemes

The anonymity property of group signature schemes aims at protection of the signers’ identi­
ties. This requirement can be formalized through an anonymity experiment, in which a PPT
adversary algorithm A on input some information about the deployed group signature scheme
Γ is supposed to decide, whether a “challenge” group signature σ∗ on a message m ∗ has been
produced by signer i0 or by signer i1. Any successful attempt of A to attribute σ∗ to its signer
ib, b ∈ {0, 1} with a probability being non-negligibly greater than 1 (for a simple guess of bit

2
b) would immediately break the anonymity property of the scheme.
The strength of some particular formal definition of anonymity can be influenced by defining

the amount of information given to the adversary A. In this section we define two anonymity
requirements that differ in their strengths. We start with insider anonymity, where A operates
on public information that can be obtained from the environment in which the scheme is
deployed, and, additionally, may learn secret signing keys of some group members, except for
the keys owned by the signers i0 and i1 from the anonymity experiment. This requirement
preserves anonymity of group members with respect to other members of the group. Our
second definition considers full anonymity, where the adversary A learns secret signing keys
of all group members. This is the strongest notion of anonymity for static group signature
schemes as defined by Bellare, Micciancio, and Warinschi [22].

Insider Anonymity

The notion of insider anonymity considers adversaries being in possession of secret signing
keys of other members of the group. The corresponding anonymity experiment provides the
adversary A with all public information about the deployed group signature scheme Γ and the
three oracles Corrupt(·), GSign(gsk [·], ·), and Open(gmsk , ·, ·) whose behavior has been specified
in Section 2.1.2. Using the opening oracle A could trivially attribute the challenge group
signature σ∗ on a message m ∗ to its signer ib. For this reason the experiment prohibits A from
opening (m ∗, σ∗).

Federal Office for Information Security 47

2. Group Signatures: Definitions and Security Models

Definition 2.3 (Insider Anonymity : Static) A group signature scheme Γ = (GKg, GSign,
GVrfy, Open) provides insider anonymity if, for all probabilistic, polynomial-time adversaries
A = (A1, A2), the following advantage function is negligible (in κ):

AdvI-AN
Γ,A (1

κ , n) =

Pr

ExptI-AN
Γ,A

(1κ , n) = 1 −

1

2

.

The associated I-AN-experiment ExptI-AN(1κ, n) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , gmsk , gsk).

Attack Stage I. Adversary A1 receives gpk .

1.	 A1 can submit queries to the oracles Corrupt(·), GSign(gsk [·], ·), and Open(gmsk , ·, ·).
2.	 A1 stops and eventually outputs a tuple (st, i0, i1,m ∗) containing some state infor­

mation st, two uncorrupted identities i0, i1 ∈ [1, n], and a challenge message m ∗ .

Challenge Stage. A bit b ∈ {0, 1} is chosen at random and the signature generation algorithm
GSign(gsk [ib],m ∗) is executed to produce the challenge group signature σ∗ .

Attack Stage II. Adversary A2 receives (st, σ∗).

1.	 A2 can submit queries to the oracles Corrupt(·), GSign(gsk [·], ·), and Open(gmsk , ·, ·)
as before, subject to the following restrictions:

a) The corruption oracle Corrupt(·) ignores queries of the form i0 and i1.

b) The opening oracle Open(gmsk , ·, ·) ignores queries of the form (m ∗, σ∗).

2.	 A2 stops and eventually outputs a bit b∗ .

Output: If b∗ = b then the experiment outputs 1, otherwise it outputs 0.	 ♦

Remark 2.1.2 Our definition of insider anonymity resembles the notion of selfless anonymity
introduced by Boneh and Shacham [38] in the context of group signatures with the verifier­
local-revocation (VLR) property. The term “selfless” in their notion refers to the restriction
that neither identity i0 nor i1 can be submitted to the corruption oracle, which is also true for
our definition. Our Definition 2.3 thus adopts their ideas to the case of static group signature
schemes that do not have the VLR property.

Full Anonymity

The notion of full anonymity is the strongest anonymity notion for static group signatures. The
anonymity adversary A is provided with secret signing keys of all group members (including i0

and i1 from the challenge stage of the anonymity experiment). The corresponding anonymity
experiment can thus be simplified in comparison to the experiment for insider anonymity: Since
A learns all signing keys in gsk both the corruption oracle Corrupt(·) and the signing oracle
GSign(gsk [·], ·) become obsolete and can be safely omitted. We proceed with the formalization
of full anonymity in Definition 2.4, which is essentially the one proposed by Bellare, Micciancio,
and Warinschi [22].

Federal Office for Information Security 48

2. Group Signatures: Definitions and Security Models

Definition 2.4 (Full Anonymity : Static) A group signature scheme Γ = (GKg, GSign,
GVrfy, Open) provides full anonymity if, for all probabilistic, polynomial-time adversaries A =
(A1, A2), the following advantage function is negligible (in κ):

AdvF-AN(1κ , n) = Pr ExptF-AN(1κ , n) = 1 −
1

.Γ,A	 Γ,A 2

The associated F-AN-experiment ExptF-AN
Γ,A (1

κ, n) proceeds as follows:

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , gmsk , gsk).

Attack Stage I. Adversary A1 receives (gpk , gsk).

1.	 A1 can submit queries to the oracle Open(gmsk , ·, ·).

2.	 A1 stops and eventually outputs a tuple (st, i0, i1,m ∗) containing some state infor­
mation st, two identities i0, i1 ∈ [1, n], and a challenge message m ∗ .

Challenge Stage. A bit b ∈ {0, 1} is chosen at random and the signature generation algorithm
GSign(gsk [ib],m ∗) is executed to produce the challenge group signature σ∗ .

Attack Stage II. Adversary A2 receives (st, σ∗).

1.	 A2 can submit queries to the oracle Open(gmsk , ·, ·), except that queries of the form
(m ∗, σ∗) are ignored.

2.	 A2 stops and eventually outputs a bit b∗ .

Output: If b∗ = b then the experiment outputs 1, otherwise it outputs 0.	 ♦

Remark 2.1.3 Our definition of full anonymity provides the adversary A = (A1, A2) not only
with secret signing keys gsk of all group members but also with an unlimited access to the oracle
Open(gmsk , ·, ·) with the only exception that A2 is not allowed to open the challenge message­
signature pair (m ∗, σ∗). Although several group signature schemes can satisfy this strong notion,
there exist, as we shall see, several schemes that can only handle a somewhat weaker case,
where adversary access to the oracle Open(gmsk , ·, ·) is blocked completely. This weaker flavor
of full anonymity was introduced by Boneh, Boyen, and Shacham [36], and is called CPA-full
anonymity, where the term CPA refers to chosen plaintext attacks in analogy to the IND-CPA
security of encryption schemes, which prohibits adversary access to the decryption oracle. In
this terminology our Definition 2.4 can also be called CCA-full anonymity in analogy to the
chosen ciphertext attacks used to define IND-CCA security of encryption schemes that allows
adversary access to the decryption oracle with some restrictions. (At this point we refer the
reader to Section 3.5 for definitions of IND-CPA and IND-CCA security in case of public key
encryption schemes.)

Federal Office for Information Security 49

2. Group Signatures: Definitions and Security Models

2.1.4. Traceability Definitions for Static Schemes

An inherent property of group signatures is the ability of the group manager to open the
signature and identify its signer. The notion of traceability considers attacks in which a
group signature is generated for which the opening procedure fails. This requirements can
be modeled through a traceability experiment, in which a PPT adversary A succeeds if it
can output a message-signature pair (m ∗, σ∗) for which the verification procedure results in
GVrfy(gpk ,m ∗, σ∗) = 1 but the opening procedure results in Open(gmsk ,m ∗, σ∗) = 0.
Again, the strength of some particular formal definition of traceability can be influenced

by defining the amount of information given to the adversary A. Our definitions comprise
two traceability notions: First, we define insider traceability by considering malicious group
members who form coalitions aiming to generate untraceable group signatures. Second, we
strengthen this notion towards full traceability by considering coalitions that include the man­
ager of the group.

Insider Traceability

The notion of insider traceability in static group signature schemes considers traceability attacks
by members of the group, while assuming honest group managers. This requirements is modeled
through a traceability experiment, in which A is given all secret signing keys in gsk and can
thus generate group signatures on behalf of any group member. In this experiment all group
members collude and work against the group manager, which remains honest in that its secret
key gmsk remains unknown to the adversary. Insider traceability allows A to submit message­
signature pairs of its choice that will then be opened by the group manager.

Definition 2.5 (Insider Traceability : Static) A group signature scheme Γ = (GKg, GSign,
GVrfy, Open) provides insider traceability if for all probabilistic, polynomial-time adversaries A,
the following advantage function is negligible (in κ):

AdvI-TR
Γ,A (1

κ , n) = Pr ExptI-TR , n) = 1 Γ,A (1
κ .

The associated I-TR-experiment ExptI-TR , n) proceeds as follows: Γ,A (1
κ

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , gmsk , gsk).

Attack Stage. Adversary A receives (gpk , gsk).

1. A can submit queries to the oracle Open(gmsk , ·, ·).
2. A stops and eventually outputs a message-signature pair (m ∗, σ∗).

Output. If GVrfy(gpk ,m ∗, σ∗) = 1 and Open(gmsk ,m ∗, σ∗) = 0 then the experiment outputs
1, otherwise it outputs 0. ♦

We note that Definition 2.5 is sufficient for most applications of static group signatures since
the group manager’s secret key gmsk is likely to be well protected from potential leakage.
Nevertheless, we show in the following, how to strengthen this traceability notion against such
attacks.

Federal Office for Information Security 50

2. Group Signatures: Definitions and Security Models

Full Traceability

The notion of full traceability extends the notion of insider traceability by allowing the adversary
A to additionally learn the secret key of the group manager gmsk . This introduces additional
protection for the traceability of group signatures in case where the group manager’s secret
key is leaked. It is important to mention that giving gmsk to A does not mean that the
group manager is considered to be dishonest. Indeed any group manager can misbehave during
the execution of the opening procedure. For example, the group manager can refuse to open
some signature or simply output 0 ignoring the actual signature that it is supposed to open.
For these reasons, our definition of full traceability models honest execution of the opening
procedure with respect to the adversary generated group signatures, even if this adversary
knows all secret information used by the scheme.

Definition 2.6 (Full Traceability : Static) A group signature scheme Γ = (GKg, GSign,
GVrfy, Open) provides full traceability if for all probabilistic, polynomial-time adversaries A,
the following advantage function is negligible (in κ):

AdvF-TR(1κ , n) = Pr ExptF-TR(1κ , n) = 1 .Γ,A Γ,A

The associated F-TR-experiment ExptF-TR(1κ, n) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , gmsk , gsk).

Attack Stage. Adversary A receives (gpk , gsk , gmsk). A stops and eventually outputs a
message-signature pair (m ∗, σ∗).

Output. If GVrfy(gpk ,m ∗, σ∗) = 1 and Open(gmsk ,m ∗, σ∗) = 0 then the experiment outputs
1, otherwise it outputs 0. ♦

Remark 2.1.4 Our definition of full traceability differs from the one proposed by Bellare,
Micciancio, and Warinschi [22] in that it does not consider attacks by which the opening algo­
rithm on input the adversary generated message-signature pair (m ∗, σ∗) outputs some identity
i∗ ∈ [1, n] of a member who did not sign m ∗ . We model this requirement explicitly in our
definitions of non-frameability in Section 2.1.5. This separation allows us to maintain consis­
tency when considering the case of dynamic group signatures, where such separation becomes
essential.

2.1.5. Non-Frameability Definitions for Static Schemes

The notion of non-frameability focuses on attacks in which a coalition of group members aims
to generate a group signature which then opens to some other member of the group. These
attacks can be mounted to accuse some particular group member of having signed some message,
which this member never signed. This requirement can be modeled through a non-frameability
experiment, in which a PPT adversaryA succeeds if it can output a message-signature pair
(m ∗, σ∗), for which the opening algorithm Open(gmsk ,m ∗, σ∗) returns identity i∗ ∈ [1, n] that
belongs to some signer who never signed m ∗ .

Federal Office for Information Security 51

2. Group Signatures: Definitions and Security Models

This basic experiment can be strengthened by providing the adversary A with more infor­
mation and capabilities. We will discuss two definitions of non-frameability for static group
signature schemes: Our first definition of insider non-frameability targets at coalitions of ma­
licious group members aiming at the generation of group signatures that will open to group
members that are not part of that coalition. Our second definition of full non-frameability
considers stronger coalitions, where malicious group members cooperate with the manager of
the group.

Insider Non-Frameability

The notion of insider non-frameability in static group signature schemes considers framing
attacks by a coalition of group members, while assuming that the group manager remains hon­
est. The ability of the adversary to build coalitions of malicious group members is modeled
through the corruption oracle Corrupt(·). Furthermore, A is given access to the signing oracle
GSign(gsk [·], ·) and to the opening oracle Open(gmsk , ·, ·). We refer to Section 2.1.2 for the
specification of these oracles. The experiment captures meaningful framing attacks as it pro­
hibits A from using the secret signing key gsk [i∗] directly to compute the message-signature
pair (m ∗, σ∗).

Definition 2.7 (Insider Non-Frameability : Static) A group signature scheme Γ = (GKg,
GSign, GVrfy, Open) provides insider non-frameability if for all probabilistic, polynomial-time
adversaries A, the following advantage function is negligible (in κ):

AdvI-NF
Γ,A (1

κ , n) = Pr ExptI-NF , n) = 1 Γ,A (1
κ .

The associated I-NF-experiment ExptI-NF , n) proceeds as follows: Γ,A (1
κ

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , gmsk , gsk).

Attack Stage. Adversary A receives gpk .

1. A can submit queries to the oracles Corrupt(·), GSign(gsk [·], ·), and Open(gmsk , ·, ·).
2. A stops and eventually outputs a message-signature pair (m ∗, σ∗).

Output. If all of the following holds then the experiment outputs 1:

1. GVrfy(gpk ,m ∗, σ∗) = 1 and Open(gmsk ,m ∗, σ∗) = i∗ with i∗ ∈ [1, n]

2. A did not submit i∗ to Corrupt(·)
3. A did not submit (i∗ ,m ∗) to GSign(gsk [·], ·).

Otherwise it outputs 0. ♦

Full Non-Frameability

The notion of full non-frameability in static group signature schemes considers framing attacks
mounted by a coalition of group members with the group manager. The corresponding non­
frameability experiment thus provides A with the secret key of the group manager gmsk .

Federal Office for Information Security 52

2. Group Signatures: Definitions and Security Models

Since A can now execute the opening procedure on its own, the corresponding opening oracle
Open(gmsk , ·, ·) becomes obsolete and can be omitted from the experiment.

Definition 2.8 (Full Non-Frameability : Static) A group signature scheme Γ = (GKg,
GSign, GVrfy, Open) provides full non-frameability if for all probabilistic, polynomial-time ad­
versaries A, the following advantage function is negligible (in κ):

AdvF-NF , n) = Pr ExptF-NF(1κ , n) = 1 Γ,A (1
κ	

Γ,A .

The associated F-NF-experiment ExptF-NF(1κ, n) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , gmsk , gsk).

Attack Stage. Adversary A receives (gpk , gmsk).

1. A can submit queries to the oracles Corrupt(·) and GSign(gsk [·], ·).
2. A stops and eventually outputs a message-signature pair (m ∗, σ∗).

Output.	 If all of the following holds then the experiment outputs 1:

1. GVrfy(gpk ,m ∗, σ∗) = 1 and Open(gmsk ,m ∗, σ∗) = i∗ with i∗ ∈ [1, n]

2. A did not submit i∗ to Corrupt(·)
3. A did not submit (i∗ ,m ∗) to GSign(gsk [·], ·).

Otherwise it outputs 0. ♦

2.2. Dynamic Group Signature Schemes

In this section we extend our formal definitions towards dynamic group signature schemes
where new group members can be dynamically admitted to the group. We again focus on the
basic functionality of such schemes, namely: generation of secret and public keys, admission
of new members to the group, generation of group signatures by members of the group, public
verification of group signatures, and their opening through the corresponding manager of the
group. In addition to defining the algorithms and their correctness property we revisit our
security definitions for different flavors of anonymity, traceability, and non-frameability in the
context of dynamic schemes.

2.2.1.	 Algorithms of Dynamic Schemes and Their Correctness
Property

The main difference in the definition of dynamic group signature schemes is the additional
protocol Join, which is executed between the group manager and some user wishing to become
a group member i. Our definition also uses integer n ∈ N to indicate the upper-bound on the
total number of users that can be admitted to the group. This does not mean that the scheme is
static since n can be thought of being sufficiently large and seen as a place-holder for identities

Federal Office for Information Security 53

2. Group Signatures: Definitions and Security Models

of future group members. In particular, we will use n to check whether some identity i is a
valid identity by verifying that i ∈ [1, n]. We define the protocol Join as a pair of interactive
algorithms (JoinM, JoinU) assuming that the group manager executes its part denoted JoinM
and the prospective group member its part denoted JoinU. In order to emphasize that the
group manager’s secret key gmsk does not evolve over the time and at the same time allow for
the dynamic update of information that can be used by the group manager for the purpose
of opening group signatures, we introduce a registration list reg which is supposed to be kept
secret by the group manager. This list is initially empty and is updated on every successful
execution of the JoinM part of the protocol.

Definition 2.9 (Dynamic Group Signature Scheme) A dynamic group signature scheme
Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open) consists of five polynomial-time algorithms/pro­
tocols:

Key generation. The randomized group key generation algorithm GKg takes as input the
security parameter 1κ , κ ∈ N and returns a tuple (gpk , gmsk , reg), where gpk is the group
public key, gmsk is the group manager’s secret key, and reg is the registration list, which
is initially empty.

Join protocol. The randomized Join protocol is a two-party protocol composed of two
interactive algorithms (JoinM, JoinU). JoinM takes as input the group manager’s secret
key gmsk and identity i ∈ [1, n], and at the end of the interaction adds a registration
entry reg [i] to the list reg . JoinU takes as input the group public key gpk and identity
i ∈ [1, n], and at the end of the interaction outputs the secret signing key gsk [i]. If either
JoinM or JoinU fails then the respective output is set to ⊥.

Signature generation. The randomized group signing algorithm GSign takes as input a
secret signing key gsk [i] and a message m, and returns a group signature σ.

Signature verification. The deterministic group signature verification algorithm GVrfy takes
as input the group public key gpk , a message m, and a candidate signature σ for m, and
returns either 1 (to indicate that the signature is valid) or 0 (to indicate a failure).

Opening procedure. The deterministic opening algorithm Open takes as input the group
manager’s secret key gmsk , a message m, a signature σ, and the registration list reg , and
returns either a signer’s identity i ∈ [1, n] or 0 (to indicate a failure). ♦

We again define the opening procedure independently of the verification procedure, thus
leaving it up to the dynamic scheme Γ to decide, whether GVrfy(gpk , m, σ) = 1 should be
checked prior to opening (m, σ).
A dynamic group signature scheme Γ should satisfy the following correctness property. Its

first condition guarantees that group signatures produced by group members can be verified
successfully, while its second condition ensures correct signer identification by the manager of
the group. Note that since Γ is dynamic the second condition should hold only for members
i that have been admitted to the group through the execution of the Join protocol. This
is modeled by requiring that correctness conditions hold for all outputs (reg [i], gsk [i]) ←

Federal Office for Information Security 54

2. Group Signatures: Definitions and Security Models

(JoinM(gmsk , i), JoinU(gpk , i)) for any i ∈ [1, n]. In particular, if some identity i ∈ [1, n] has
not been admitted to the group then the opening algorithm is supposed to return 0.

Definition 2.10 (Correctness : Dynamic) A group signature scheme Γ = (GKg, (JoinM,
JoinU), GSign, GVrfy, Open) is correct if for all κ, n ∈ N, all outputs (gpk , gmsk , reg) ← GKg(1κ),
all outputs (reg [i], gsk [i]) ← (JoinM(gmsk , i), JoinU(gpk , i)) for any i ∈ [1, n], and all messages
m ∈ {0, 1}∗ :

GVrfy(gpk , m, GSign(gsk [i],m)) = 1 and Open(gmsk , m, GSign(gsk [i],m), reg) = i.

♦

2.2.2. Optional Algorithms for Membership Revocation

The algorithms of a dynamic group signature scheme introduced in Definition 2.9 consider
groups where new members can be added to the group. In fully dynamic schemes, members
can also leave the group or be excluded from the group by the group manager, depending on
the application. Obviously, the group signature scheme has to be updated with the revocation
procedure. Additionally, one should ask the following question: When should a group signature
σ produced by some user i∗ , i∗ ∈ [1, n] be considered as valid? In fact, there are two alternative
approaches: (1) σ is valid if i∗ belonged to the group at the moment it invoked GSign to
generate σ, or (2) σ is valid if i∗ belongs to the group at the moment GVrfy is invoked to
check its validity. In both cases the group signature scheme should be able to treat different
revocation epochs t to account for different executions of the revocation procedures. That is, if
some member i∗ is revoked, the group manager should be able to perform a revocation operation
resulting in the update of the remaining members’ keys gsk [i] or of the group public key gpk .
In case (1) the group public key gpk may stay the same across multiple revocation epochs
but remaining group members i should be able to execute some update procedure UpdM to
compute (gsk [i], t+1), i.e. a valid signing key for epoch t+1, out of (gsk [i], t). This procedure
should be inaccessible to the revoked member i∗ being in possession of (gsk [i∗], t). This implies
some sort of interaction between remaining members and the group manager. In case (2) the
signing keys gsk [i] may stay the same while the group manager should be able to compute
(gpk , t + 1), i.e. the group public key for epoch t + 1, from (gpk , t). In the following we extend
and update the syntax of dynamic group signature schemes from Definition 2.9 to address the
revocation procedure. The new update information upd , which is public and modifiable only
by the group manager, without necessarily being part of the group public key, is used to keep
track on membership changes. The group manager can modify upd upon the admission and
the revocation of group members. For the latter task a new algorithm Revoke is introduced.
Additionally, group members can update their secret signing keys using the new algorithm
UpdM.

Key generation. The algorithm GKg is modified to additionally output public update infor­
mation upd , which is initially empty.

Join protocol. The protocol Join allows the group manager to modify gpk and upd at the
end of its JoinM part of the protocol.

Federal Office for Information Security 55

2. Group Signatures: Definitions and Security Models

Revocation procedure. The randomized revocation algorithm Revoke takes as input the
group manager’s secret key gmsk , the identity i ∈ [1, n] of a member to be revoked,
the registration entry reg [i], and the current update information upd , and results in a
possible update of gpk and upd .

Update procedure. The randomized update algorithm UpdM takes as input the current
secret signing key gsk [i] and at least the update information upd , and results in the
modification of gsk [i].

The algorithms for signature generation/verification and the opening procedure remain the
same. It is implicitly assumed that algorithms GVrfy and Open use the most recent version
of the group public key gpk , whereas algorithm GSign uses the up-to-date secret signing keys
gsk [i].

2.2.3. Adversary Model and Oracles for Dynamic Schemes

Our formal definitions of security for dynamic group signature schemes Γ = (GKg, (JoinM, JoinU),
GSign, GVrfy, Open) will be provided through probabilistic experiments ExptΓ,A(1

κ) as men­
tioned in Section 1.5. In general, A will be given access to (a subset of) the following oracles:

Add user oracle. The add user oracle AddU(·) takes as input an identity i ∈ [1, n], which does
not belong to any member of the group and executes (JoinM(gmsk , i), JoinU(gpk , i)) to
compute (reg [i], gsk [i]).

Join oracles. The join oracle JoinM(gmsk , ·) takes as input an identity i ∈ [1, n] and executes
part JoinM(gmsk , i) of the Join protocol, which eventually leads to the computation of
reg [i].
The join oracle JoinU(gpk , ·) takes as input an identity i ∈ [1, n] and executes part
JoinU(gpk , i) of the Join protocol, which eventually leads to the computation of gsk [i].
These join oracles are defined only if i does not already belong to some group member,
previously admitted via the AddU, JoinM, or JoinU oracle.

Corruption oracle. The corruption oracle Corrupt(·) takes as input an identity i ∈ [1, n] and
returns the secret signing key gsk [i]. This oracle is defined only if i belongs to some
group member, previously admitted via the AddU or JoinU oracle.

Signing oracle. The signing oracle GSign(gsk [·], ·) takes as input an identity-message pair
(i, m) with i ∈ [1, n], and returns the output of the group signing algorithm GSign(gsk [i],
m). This oracle is defined only if i belongs to some group member, previously admitted
via the AddU or JoinU oracle.

Opening oracle. The opening oracle Open(gmsk , ·, ·, reg) takes as input a message-signature
pair (m, σ), and returns the output of the opening algorithm Open(gmsk , m, σ, reg).

Since the group is initially empty A should be given the possibility to add new members
to the group. The add user oracle AddU(·) models the honest admission process by which a

Federal Office for Information Security 56

2. Group Signatures: Definitions and Security Models

new member i receives its secret signing key gsk [i] and the group manager the corresponding
registration information reg [i]. Note that A does not learn these secrets, i.e. A only knows that
member i has been added to the group. The JoinU(gpk , ·) oracle also allows for admission of an
honest member i to the group, except that now A can possibly execute the group manager’s
part of the protocol and thus compute the corresponding registration entry reg [i] but not the
secret signing key of the admitted member.
In contrast, JoinM(gmsk , ·) oracle allows A to participate in the join protocol on behalf of

the prospective group member i and obtain gsk [i].
In practice, the Join protocol may have several rounds of interaction. Our oracles JoinM(gmsk ,
·) and JoinU(gpk , ·) are assumed to execute these rounds sequentially, i.e. no new invocation
call to the oracle is processed until the oracle completes its interaction from the previous
call. It is implicitly assumed that in a multi-round Join protocol each of these oracles passes its
running state between the rounds and answers incoming protocol messages until the interaction
completes, in which case the running state is re-set.
The oracles Corrupt(·) and GSign(gsk [·], ·) are identical to those defined for static group

signatures, except that they check the existence of the particular member i for which the
queries are asked. The oracle Open(gmsk , ·, ·, reg) differs in the additional parameter reg but
otherwise proceeds identically to the static case.
To keep the exposition simple we do not address oracles that could be available to the

adversary in schemes that support membership revocation. We will discuss the additional
constraints with regard to the security of such schemes informally.

2.2.4. Anonymity Definitions for Dynamic Schemes

In this section we introduce the anonymity definitions for dynamic group signatures schemes
Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open) building upon such requirements and associated
experiments for static signature schemes introduced in Section 2.1.3.

Insider Anonymity

The notion of insider anonymity for dynamic signature schemes provides the adversary A with
all public information about the deployed group signature scheme Γ and access to the oracles
AddU(·), JoinM(gmsk , ·), Corrupt(·), GSign(gsk [·], ·), and Open(gmsk , ·, ·, reg), whose behavior
has been specified in Section 2.1.2. The associated experiment proceeds widely similar to that
for static schemes. An important remark here is that since A is given access to the oracle
JoinM(gmsk , ·) the experiment has to restrict the identities i0 and i1 output by A to be uncor­
rupted identities, previously admitted through the AddU(·) oracle. Otherwise, if these identities
would have been admitted through the JoinM(gmsk , ·) oracle then the experiment would not
know the corresponding secret signing keys in order to compute the challenge signature.

Definition 2.11 (Insider Anonymity : Dynamic) A group signature scheme Γ = (GKg,
(JoinM, JoinU), GSign, GVrfy, Open) provides insider-anonymity if for all PPT adversaries A =

Federal Office for Information Security 57

2. Group Signatures: Definitions and Security Models

(A1, A2), the following advantage function is negligible (in κ):

AdvI-AN ExptI-AN 1
(1κ) = Pr (1κ) = 1 − .Γ,A	 Γ,A 2

The associated I-AN-experiment ExptI-AN(1κ) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , gmsk , reg).

Attack Stage I. Adversary A1 receives gpk .

1.	 A1 can submit queries to the oracles AddU(·), JoinM(gmsk , ·), Corrupt(·), GSign(gsk [·],
·), and Open(gmsk , ·, ·, reg).

2.	 A1 stops and eventually outputs a tuple (st, i0, i1,m ∗) containing some state infor­
mation st, two uncorrupted identities i0, i1 ∈ [1, n] previously admitted via corre­
sponding AddU(·) queries, and a challenge message m ∗ .

Challenge Stage. A bit b ∈ {0, 1} is chosen at random and the signature generation algorithm
GSign(gsk [ib],m ∗) is executed to produce the challenge group signature σ∗ .

Attack Stage II. Adversary A2 receives (st, σ∗).

1.	 A2 can submit queries to the oracles AddU(·), JoinM(gmsk , ·), Corrupt(·), GSign(gsk [·],
·), and Open(gmsk , ·, ·, reg) as before, subject to the following restrictions:

a) The corruption oracle Corrupt(·) ignores queries of the form i0 and i1.

b) The opening oracle Open(gmsk , ·, ·, reg) ignores queries of the form (m ∗, σ∗).

2.	 A2 stops and eventually outputs a bit b∗ .

Output: If b∗ = b then the experiment outputs 1, otherwise it outputs 0.	 ♦

Full Anonymity

The strongest notion of full anonymity for dynamic schemes also remains widely identical to
that of static schemes. The only difference is that since the scheme is dynamic the adversary A
cannot be given all secret signing keys of users as input in advance. Hence, A is provided with
an unrestricted access to the corruption oracle Corrupt(·) from which it can obtain all these
keys. We proceed with the formalization of full anonymity for dynamic schemes in Definition
2.12, which essentially resembles the definition given by Bichsel et al. [31].

Definition 2.12 (Full Anonymity : Dynamic) A group signature scheme Γ = (GKg, (JoinM,
JoinU), GSign, GVrfy, Open) provides full anonymity if for all PPT adversaries A = (A1, A2),
the following advantage function is negligible (in κ):

AdvF-AN ExptF-AN 1
Γ,A (1

κ) = Pr Γ,A (1
κ) = 1 − .

2

The associated F-AN-experiment ExptF-AN(1κ, n) proceeds as follows: Γ,A

Federal Office for Information Security 58

2. Group Signatures: Definitions and Security Models

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , gmsk , reg).

Attack Stage I. Adversary A1 receives gpk .

1.	 A1 can submit queries to the oracles AddU(·), JoinM(gmsk , ·), Corrupt(·), GSign(gsk [·],
·), and Open(gmsk , ·, ·, reg).

2.	 A1 stops and eventually outputs a tuple (st, i0, i1,m ∗) containing some state infor­
mation st, two identities i0, i1 ∈ [1, n] previously admitted via corresponding AddU(·)
queries, and a challenge message m ∗ .

Challenge Stage. A bit b ∈ {0, 1} is chosen at random and the signature generation algorithm
GSign(gsk [ib],m ∗) is executed to produce the challenge group signature σ∗ .

Attack Stage II. Adversary A2 receives (st, σ∗).

1.	 A2 can submit queries to the oracles AddU(·), JoinM(gmsk , ·), Corrupt(·), GSign(gsk [·],
·), and Open(gmsk , ·, ·, reg) as before, subject to the following restriction:

a) The opening oracle Open(gmsk , ·, ·, reg) ignores queries of the form (m ∗, σ∗).

2.	 A2 stops and eventually outputs a bit b∗ .

Output: If b∗ = b then the experiment outputs 1, otherwise it outputs 0.	 ♦

2.2.5. Traceability Definitions for Dynamic Schemes

In this section we revisit definitions of traceability for dynamic group signature schemes. Recall
that these attacks aim at generation of group signatures that cannot be opened by the group
manager. Our exposition shows that not all flavors of traceability introduced for static schemes
can be applied in the context of dynamic schemes. In particular, while the notion of insider
traceability remains widely similar, the notion of full traceability cannot be achieved in the
same strong sense as for static schemes.

Insider Traceability

The notion of insider traceability in dynamic group signature schemes considers traceability
attacks by members of the group, while assuming that the group manager remains honest.
We formalize this notion in Definition 2.13 by updating the traceability experiment for static
schemes to fit the new adversarial model. The basic idea remains, however, the same. In
particular, an adversary A can admit all group members and learn their secret signing keys
through the JoinM(gmsk , ·) oracle. Thus, A can also generate valid group signatures. It can
further ask the group manager to open any message-signature pair of its choice through the
opening oracle Open(gmsk , ·, ·, reg).

Definition 2.13 (Insider Traceability : Dynamic) A group signature scheme Γ = (GKg,
(JoinM, JoinU), GSign, GVrfy, Open) provides insider traceability if for all probabilistic, poly­
nomial-time adversaries A, the following advantage function is negligible (in κ):

AdvI-TR
Γ,A (1

κ) = Pr ExptI-TR .Γ,A (1
κ) = 1

Federal Office for Information Security 59

2. Group Signatures: Definitions and Security Models

The associated I-TR-experiment ExptI-TR
Γ,A (1

κ) proceeds as follows:

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , gmsk , reg).

Attack Stage. Adversary A receives gpk .

1. A can submit queries to the oracles JoinM(gmsk , ·), and Open(gmsk , ·, ·, reg).
2. A stops and eventually outputs a message-signature pair (m ∗, σ∗).

Output. If GVrfy(gpk ,m ∗, σ∗) = 1 and Open(gmsk ,m ∗, σ∗ , reg) = 0 then the experiment out­
puts 1, otherwise it outputs 0. ♦

On Impossibility of Full Traceability for Dynamic Schemes

The strongest notion of full traceability, which extends the insider traceability by allowing the
adversary A to additionally learn the secret key of the group manager gmsk (and possibly the
registration list reg) cannot be achieved in dynamic schemes if one follows their specification
from Definition 2.9. The reason is obvious: If A knows gmsk it can pick any identity i∗ ∈ [1, n]
which has not been admitted to the group yet and execute the corresponding joining protocol
(JoinM(gmsk , i∗), JoinU(gpk , i∗)) to obtain (reg [i∗], gsk [i∗]), which would remain unknown to
the experiment. A can then execute GSign(gsk [i∗],m ∗) on an arbitrary message m ∗ to compute
a signature σ∗, and output (m ∗, σ∗), which will pass the verification check GVrfy(gpk ,m ∗, σ∗) = 1
but for which the (honestly executed) opening algorithm Open(gmsk ,m ∗, σ∗ , reg) will output 0.
The reason why (m ∗, σ∗) cannot be opened is that the honest opening procedure is executed by
the experiment, which does not know about the existence of a group member with identity i∗ .
That is the corresponding registration entry reg [i∗] does not exist in the registration list reg
maintained by the experiment and the opening procedure will output 0 due to its correctness
property (per Definition 2.10). There is not much one can do about this attack. Therefore, the
strongest meaningful definition of traceability for dynamic schemes is that of insider traceability.

2.2.6. Non-Frameability Definitions for Dynamic Schemes

In this section we revisit the notion of non-frameability, which considers attacks performed by a
coalition of group members aiming to produce a valid group signature which then opens to some
other member of the group. We show how to adopt definitions for insider non-frameability and
full non-frameability to the extended functionality and adversary model of dynamic schemes.

Insider Non-Frameability

In order to define insider non-frameability for dynamic group signature schemes we extend the
corresponding experiment to fit the constraints of the dynamic setting. The experiment still
captures meaningful framing attacks by prohibiting A from using the secret signing key gsk [i∗]
directly to compute the message-signature pair (m ∗, σ∗). In contrast to static schemes, where
A could obtain gsk [i∗] from the respective Corrupt(·) oracle only, a dynamic scheme offers A an
additional possibility to learn gsk [i∗] by querying i∗ to the JoinM(gmsk , ·) oracle. This is why
the experiment has to ensure that no such query was submitted by A in the course of attack.

Federal Office for Information Security 60

2. Group Signatures: Definitions and Security Models

Definition 2.14 (Insider Non-Frameability: Dynamic) A group signature scheme Γ =
(GKg, (JoinM, JoinU), GSign, GVrfy, Open) provides insider non-frameability if for all PPT ad­
versaries A, the following advantage function is negligible (in κ):

AdvI-NF
Γ,A (1

κ) = Pr ExptI-NF .Γ,A (1
κ) = 1

The associated I-NF-experiment ExptI-NF
Γ,A (1

κ) proceeds as follows:

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , gmsk , reg).

Attack Stage. Adversary A receives gpk .

1.	 A can submit queries to the oracles AddU(·), JoinM(gmsk , ·), Corrupt(·), GSign(gsk [·],
·), and Open(gmsk , ·, ·, reg).

2.	 A stops and eventually outputs a message-signature pair (m ∗, σ∗).

Output. If all of the following holds then the experiment outputs 1:

1.	 GVrfy(gpk ,m ∗, σ∗) = 1 and Open(gmsk ,m ∗, σ∗ , reg) = i∗ with i∗ ∈ [1, n]

2.	 A did not submit i∗ to JoinM(gmsk , ·)
3.	 A did not submit i∗ to Corrupt(·)
4. A did not submit (i∗ ,m ∗) to GSign(gsk [·], ·).

Otherwise it outputs 0. ♦

Full Non-Frameability

Our definition of full non-frameability for dynamic group signature schemes extends the cor­
responding experiment for static schemes from Section 2.1.5 to fit the dynamic model. This
strong definition still makes sense for dynamic schemes since, intuitively, the additional knowl­
edge of gmsk (and reg) should not allow the adversary to frame uncorrupted group members.
In the corresponding experiment A is provided with the access to the JoinU(gpk , ·) oracle and
can thus admit honest members to the group while misbehaving during the joining protocol.
Therefore, there is no need to provide A with AddU(·) and JoinM(gmsk , ·) oracles. Since A in
the role of the corrupted group manager also obtains control over the registration list reg the
opening oracle Open(gmsk , ·, ·, reg) can be omitted, because A can open honestly generated
signatures on its own. By giving such control over the registration list reg to A the experiment
should nevertheless be able to evaluate the success of A in its attack. This evaluation requires
that the experiment opens the message-signature pair (m ∗, σ∗) output by A at the end of the
attack stage. Given that A should have control over the registration list we require that in
addition to (m ∗, σ∗) the adversary outputs some list reg ∗, which will be used to evaluate its
success. Another important aspect is that A could possibly admit i∗ as a new group member
such that the experiment remains unaware of this admission, e.g. when A executes both parts
of the join protocol for i∗, which has not been admitted through the JoinU(gpk , ·) oracle before.
This will allow A to succeed in a trivial way since A could specify the secret signing key of i∗ on
its own, without the experiment being able to recognize this as a corruption of i∗ . Therefore,

Federal Office for Information Security 61

2. Group Signatures: Definitions and Security Models

the experiment additionally checks that gsk [i∗] exists= ε, i.e. that the secret signing key of i∗

and is known to the experiment. This is the case only if i∗ has been admitted through the
JoinU(gpk , ·) oracle before. We proceed with the formalization of this notion in Definition 2.15.

Definition 2.15 (Full Non-Frameability : Dynamic) A group signature scheme Γ = (GKg,
(JoinM, JoinU), GSign, GVrfy, Open) provides full non-frameability if for all PPT adversaries A,
the following advantage function is negligible (in κ):

AdvF-NF(1κ) = Pr ExptF-NF(1κ) = 1 .Γ,A Γ,A

The associated F-NF-experiment ExptF-NF(1κ) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , gmsk , reg).

Attack Stage. Adversary A receives (gpk , gmsk , reg).

1. A can submit queries to the oracles JoinU(gpk , ·), Corrupt(·), and GSign(gsk [·], ·).
2. A stops and eventually outputs a tuple (m ∗, σ∗ , reg ∗).

Output. If all of the following holds then the experiment outputs 1:

1. GVrfy(gpk ,m ∗, σ∗) = 1 and Open(gmsk ,m ∗, σ∗ , reg ∗) = i∗ with i∗ ∈ [1, n]

2. gsk [i∗] = ε

3. A did not submit i∗ to Corrupt(·)
4. A did not submit (i∗ ,m ∗) to GSign(gsk [·], ·).

Otherwise it outputs 0. ♦

2.3. Group Signature Schemes with Verifiable Opening

The opening procedure of a group signature scheme Γ can be executed by the manager of
the group in order to identify the signer i for some given message-signature pair (m, σ). In
ordinary group signatures this procedure outputs only the identity i ∈ [1, n] (or 0 to indicate a
failure). In scenarios where the group manager could attempt to falsely accuse some particular
member i of having signed message m although i never did so, this basic opening procedure
may not be sufficient. Indeed, nothing prevents a misbehaving group manager from outputting
arbitrary identities i as a claimed result of the opening procedure. Therefore, if dishonest group
managers represent a potential threat for the application then it would be desirable to have
group signature schemes offering a proof τ that the output identity i of the opening procedure
indeed belongs to the claimed signer of m, and some further verification algorithm that could
judge whether τ is a correct proof for the statement that “identity i belongs to the group
member who generated signature σ on the message m”. In this section we extend definitions
for ordinary group signature schemes towards schemes with verifiable opening (VO-schemes).
We present definitions for dynamic VO-schemes, which can also be easily applied to static
schemes.

Federal Office for Information Security 62

2. Group Signatures: Definitions and Security Models

2.3.1. Algorithms of VO-Schemes and Their Correctness Property

We define group signature schemes with verifiable opening in Definition 2.16 by modifying the
opening and adding the judgement procedure. Since the modified opening procedure outputs
a proof τ the corresponding algorithm Open is assumed to be randomized. Instead, the new
algorithm Judge which either accepts or rejects the proof is deterministic. We explicitly omit
definitions of the key generation algorithm GKg, join protocol Join, and the group signing
/ verifying algorithms GSign / GVrfy, which remain identical to the case of ordinary group
signatures.

Definition 2.16 (Group Signature Scheme with Verifiable Opening) A group signatu­
re scheme with verifiable opening Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open, Judge) is a
group signature scheme with the modified algorithm Open and a new algorithm Judge defined
in the following:

Opening procedure. The randomized opening algorithm Open takes as input the group
manager’s secret key gmsk , a message m, a signature σ (and if the scheme is dynamic
the registration list reg), and returns either a pair (i, τ) containing a signer’s identity
i ∈ [1, n] and a proof τ , or (0, ⊥) (to indicate a failure).

Judgement procedure. The deterministic judgement algorithm Judge takes as input the
group public key gpk , a message m, a signature σ, an identity i ∈ [1, n], and a proof τ
and returns either 1 (to indicate that the proof is valid) or 0 (otherwise). ♦

Note that syntax of the above algorithms and protocols can be extended to address mem­
bership revocation, similarly to the case of ordinary dynamic schemes, mentioned in Section
2.2.2.
The following correctness property of a VO-scheme says that any opening procedure, per­

formed on a group signature, which was generated by some valid member of the group, results
in the identity of that member and the corresponding proof that can be successfully verified by
the judgement algorithm.

Definition 2.17 (Correctness : VO) A group signature scheme Γ = (GKg, (JoinM, JoinU),
GSign, GVrfy, Open, Judge) is correct if for all group public keys gpk , group manager’s secret
keys gmsk , secret signing keys gsk [i], and registration entries reg [i] (generated as in Definition
2.10), and all messages m ∈ {0, 1}∗, all of the following holds:

1. GVrfy(gpk , m, GSign(gsk [i],m)) = 1

2. Open(gmsk , m, GSign(gsk [i],m), reg [i]) = (i, τ) with i > 0

3. Judge(gpk , m, σ, i, τ) = 1. ♦

Federal Office for Information Security 63

2. Group Signatures: Definitions and Security Models

2.3.2. Optional Algorithms for User PKI

The above definition of group signatures with verifiable opening procedure implicitly assumes
that identity i corresponds to some particular user that can be blamed of having produced
the group signature σ. Many group signature schemes offering verifiable opening assume that
proof τ contains some information that can be publicly linked to the claimed identity i. This,
however, implies that information contained in τ must have been authenticated by the user i.
Several group signature schemes make this binding more explicit by considering a public key
infrastructure (PKI) for the admitted group members. This user PKI helps to actually verify,
whether i is the purported signer of the group signature σ. The explicit use of such PKI in group
signature schemes requires modifications to their syntax in order to accommodate the additional
algorithms of the user PKI. In particular, the user PKI should be setup independently of the
group signature scheme. That is, users should be able to generate their key pairs (usk [i], upk [i])
that can then be assumed to be bound to their respective identities i by the means of PKI
certification. It is important to mention that certification of public keys upk [i] is assumed to
be done by some certification authority, which is independent of any authorities (e.g. group
manager) participating in the group signature scheme. Thus, group signature schemes with
explicit user PKI should include the following algorithm:

User key generation. The user key generation algorithm UKg takes as input the security
parameter 1κ , κ ∈ N and outputs user’s private/public key pair (usk [i], upk [i]).

The entire user PKI can represented by the list upk containing public keys of the users. It
will be generally assumed that upk is public (but not modifiable by the adversary) and that
any upk [i] can be retrieved using the corresponding identity i. That is, it suffices to give i
to algorithms and protocols of the group signature scheme in order for them to obtain upk [i].
Another alternative would be to explicitly add upk [i] as input to the respective algorithms.
Note that in dynamic VO-schemes upk [i] is in general used by the algorithms Open and Judge
as well as in the group manager’s part JoinM of the joining protocol, whereas usk [i] is used in
the user’s part JoinU of the joining protocol.

Remark 2.3.1 Explicit consideration of user PKI can also be useful in static VO-schemes.
In this case all members added to the group during the key generation procedure should be
registered PKI users, that is the corresponding user key generation algorithm UKg for each
prospective member i would have to be executed prior to GKg or as part of GKg. This would
require some sort of interaction between the group manager and the prospective group mem­
ber during the key generation procedure, unless the group manager is trusted to generate
(usk [i], upk [i]) on behalf of every i and erase usk [i] after providing i with usk [i] (and gsk [i]).

2.3.3. Adversary Model and Oracles for VO-Schemes

The adversary model for VO-schemes remains widely similar to ordinary group signatures.
That is, we still consider PPT adversaries A and grant them access to the same oracles as
before, except that the corresponding opening oracles — Open(gmsk , ·, ·) for static schemes
and Open(gmsk , ·, ·, reg) for dynamic schemes — on some query (m, σ) output the result of

Federal Office for Information Security 64

2. Group Signatures: Definitions and Security Models

the opening algorithm of a VO-scheme. That is, the opening oracle on input some message­
signature pair (m, σ) will output either (i, τ) or (0, ⊥). We refer to Sections 2.1.2 and 2.2.3 for
the definitions of the other oracles that will be used in the security experiments for VO-schemes.
In case of VO-schemes, where user PKI is explicitly used as part of the specification, the

adversary can also be given access to special oracles modeling attacks on the user PKI. In
particular, the adversary should be able to introduce new users (under adversary’s control) to
the PKI and corrupt existing PKI users by obtaining their PKI-certified secret keys usk [i].
The first ability of the adversary will be modeled through the new oracle AddPKI described
below, while the ability to corrupt usk [i] will be modeled by the appropriate modification of
the Corrupt oracles as described below.

Add PKI oracle. The add PKI oracle AddPKI takes as input an identity i ∈ [1, n] and some
string upk. If condition upk [i] = ε holds then the oracle sets upk [i] = upk; otherwise it
ignores the query. (Note that condition upk [i] = ε ensures that i is a new user. Any user
added to PKI via this oracle will be treated as corrupted by the adversary. However, it
is not necessary for the adversary to actually present or proof possession of some suitable
secret key usk corresponding to upk.)

Corruption oracle. The corruption oracle Corrupt(·) (defined for static schemes in Section 2.1.2
and for dynamic schemes in Section 2.2.3) is modified such that in addition to the secret
signing key gsk [i] it also returns the PKI-certified secret key usk [i] (unless the corre­
sponding public key upk [i] was established through a query to AddPKI in which case
usk [i] is not known).

Add user and join oracles. In dynamic VO-schemes AddU(·) and JoinU(gpk , ·) oracles (defined
in Section 2.2.3) that can be used to admit an uncorrupted prospective member i to
the group should be modified to check that upk [i] = ε holds and if so generate the
PKI-certified key pair (usk [i], upk [i]) ←R UKg(1

κ) for i before further processing the
request. (This guarantees that every uncorrupted group member i has a PKI-certified
key pair.) Furthermore, the JoinM(gmsk , ·) oracle that can be used by the adversary
to admit member i under its control should also check whether upk [i] = ε holds, thus
ensuring that such members also have been registered within the PKI.

In our security definitions for group signature schemes with verifiable opening procedure we
will not consider user PKI as an explicit part of the scheme. Yet, where necessary, we will give
remarks on how user PKI would affect these definitions.

2.3.4. Anonymity Definitions for VO-Schemes

The anonymity notions for group signatures with verifiable opening are the same as for ordinary
group signatures schemes. The corresponding definitions of insider anonymity from Definitions
2.3 and 2.11 apply to static and dynamic VO-schemes, respectively. Also, our formal definitions
of full anonymity from Definitions 2.4 and 2.12 can be used with VO-schemes.
If user PKI is explicitly used then definitions of full anonymity for the corresponding VO­

scheme should allow the adversary to obtain all PKI-certified secret keys from usk (in addition

Federal Office for Information Security 65

2. Group Signatures: Definitions and Security Models

to their secret signing keys in gsk). In case of insider anonymity where corruption of signers
i0 and i1 used in the generation of the challenge group signature σ∗ is prohibited the adversary
can still be given all keys from usk . This is because, intuitively, secret signing keys gsk [i] used
in the generation of group signatures should be independent of the PKI-certified keys.

2.3.5. Traceability Definitions for VO-Schemes

The modification of the opening procedure in VO-schemes towards the output of proof τ and
the introduction of the publicly executable algorithm Judge influences definitions of traceability
for static and dynamic schemes from Sections 2.1.4 and 2.2.5, respectively, where the success of
the adversary was evaluated based on the outputs of the opening procedure. In particular, the
corresponding experiments for insider traceability and full traceability (the latter notion is still
meaningful only for static VO-schemes) have to be modified to account for traceability attacks,
in which the judgement procedure fails although the opening procedure succeeds. Note that in
schemes with explicit user PKI both definitions can remain as is since the adversary can obtain
control over all users (and thus their PKI-certified keys) anyway, upon their admission to the
group using the JoinM(gmsk , ·) oracle.

Insider Traceability

We modify definition of insider traceability to address dynamic VO-schemes. The corresponding
definition for static schemes can be obtained in a similar way.

Definition 2.18 (Insider Traceability : VO) A group signature scheme Γ = (GKg, (JoinM,
JoinU), GSign, GVrfy, Open, Judge) provides insider traceability if for all PPT adversaries A, the
following advantage function is negligible (in κ):

AdvI-TR
Γ,A (1

κ) = Pr ExptI-TR .Γ,A (1
κ) = 1

The associated I-TR-experiment ExptI-TR
Γ,A (1

κ) proceeds as follows:

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , gmsk , reg).

Attack Stage. Adversary A receives gpk .

1. A can submit queries to the oracles JoinM(gmsk , ·) and Open(gmsk , ·, ·, reg).

2. A stops and eventually outputs a message-signature pair (m ∗, σ∗).

Output. The experiment runs Open(gmsk ,m ∗, σ∗ , reg) to obtain (i∗, τ ∗). It then outputs 1 if
all of the following holds:

1. GVrfy(gpk ,m ∗, σ∗) = 1

2. i∗ = 0 or Judge(gpk ,m ∗, σ∗, i∗, τ ∗) = 0.

Otherwise, the experiment outputs 0. ♦

Federal Office for Information Security 66

2. Group Signatures: Definitions and Security Models

Full Traceability

Our arguments on the impossibility of full traceability of dynamic group signature schemes
from Section 2.2.5 hold also for dynamic VO-schemes. In Definition 2.19 we thus define full
traceability for static VO-schemes only.

Definition 2.19 (Full Traceability : Static VO) A group signature scheme Γ = (GKg,
GSign, GVrfy, Open, Judge) provides full traceability if for all PPT adversaries A, the follow­
ing advantage function is negligible (in κ):

AdvF-TR(1κ , n) = Pr ExptF-TR(1κ , n) = 1 .Γ,A Γ,A

The associated F-TR-experiment ExptF-TR(1κ, n) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , gmsk , gsk).

Attack Stage. Adversary A receives (gpk , gsk , gmsk). A stops and eventually outputs a
message-signature pair (m ∗, σ∗).

Output. The experiment runs Open(gmsk ,m ∗, σ∗) to obtain (i∗, τ ∗). It then outputs 1 if all of
the following holds:

1. GVrfy(gpk ,m ∗, σ∗) = 1

2. i = 0 or Judge(gpk ,m ∗, σ∗, i∗, τ ∗) = 0.

Otherwise, the experiment outputs 0. ♦

2.3.6. Non-Frameability Definitions for VO-Schemes

A publicly executable Judge algorithm for verifying the validity of the opening procedure sig­
nificantly strengthens the notion of non-frameability. The reason is that now in order to suc­
cessfully accuse some group member i∗ of having produced a signature σ∗ on a message m ∗ ,
the adversary A has to output a tuple (m ∗, σ∗, i∗, τ ∗), which will pass the algorithm Judge and
for which (m ∗, σ∗) can be successfully verified using GVrfy.

Insider Non-Frameability

We define insider non-frameability for VO-schemes in Definition 2.20. In case of static VO­
schemes the second output condition can be dropped. If the VO-scheme comes with explicit
user PKI then the adversary can be given access to the AddPKI(·, ·) oracle but the output
conditions should also check that this oracle has not been used to register i∗ .

Definition 2.20 (Insider Non-Frameability: VO) A group signature scheme Γ = (GKg,
(JoinM, JoinU), GSign, GVrfy, Open, Judge) provides insider non-frameability if for all PPT ad­
versaries A, the following advantage function is negligible (in κ):

AdvI-NF
Γ,A (1

κ) = Pr ExptI-NF .Γ,A (1
κ) = 1

The associated I-NF-experiment ExptI-NF
Γ,A (1

κ) proceeds as follows:

Federal Office for Information Security 67

2. Group Signatures: Definitions and Security Models

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , gmsk , reg).

Attack Stage. Adversary A receives gpk .

1.	 A can submit queries to the oracles AddU(·), JoinM(gmsk , ·), Corrupt(·), GSign(gsk [·],
·), and Open(gmsk , ·, ·, reg).

2. A stops and eventually outputs a tuple (m ∗, σ∗, i∗, τ ∗).

Output. If all of the following holds then the experiment outputs 1:

1. GVrfy(gpk , m ∗, σ∗) = 1
= 1

and i∗ ∈ [1, n] and Judge(gpk , m ∗, σ∗, i∗, τ ∗)

2. A did not submit i∗ to JoinM(gmsk , ·)
3. A did not submit i∗ to Corrupt(·)
4. A did not submit (i∗ , m ∗) to GSign(gs

Otherwise the experiment outputs 0.

k [·], ·).
♦

Full Non-Frameability

The notion of full non-frameability considers framing attacks by member coalitions which may
also include the group manager. In VO-schemes a successful attack can be checked through
the algorithm Judge, which does not take any secrets of the group manager. Therefore, the
non-frameability experiment for VO-schemes can check whether a framing attack against some
member i∗ is successful without using gmsk and reg . In particular, the experiment for dynamic
VO-schemes in Definition 2.21 does not require A to output a registration list reg ∗ (unlike the
corresponding experiment for ordinary dynamic schemes in Definition 2.15). In case of static
VO-schemes the second output condition can be dropped and in case of VO-schemes with
explicit user PKI the adversary can be given access to the AddPKI(·, ·) oracle but the output
conditions should also check that this oracle has not been used to register i∗ .

Definition 2.21 (Full Non-Frameability : VO) A group signature scheme Γ = (GKg, (JoinM,
JoinU), GSign, GVrfy, Open, Judge) provides full non-frameability if for all PPT adversaries A,
the following advantage function is negligible (in κ):

AdvF-NF(1κ) = Pr ExptF-NF(1κ) = 1 .Γ,A	 Γ,A

The associated F-NF-experiment ExptF-NF(1κ) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , gmsk , reg).

Attack Stage. Adversary A receives (gpk , gmsk , reg).

1.	 A can submit queries to the oracles JoinU(gpk , ·), Corrupt(·), and GSign(gsk [·], ·).
2.	 A stops and eventually outputs a tuple (m ∗, σ∗, i∗, τ ∗).

Output. If all of the following holds then the experiment outputs 1:

Federal Office for Information Security 68

2. Group Signatures: Definitions and Security Models

1.	 GVrfy(gpk ,m ∗, σ∗) = 1 and i∗ ∈ [1, n] and Judge(gpk ,m ∗, σ∗, i∗, τ ∗)
= 1

2.	 gsk [i∗] = ε

3.	 A did not submit i∗ to Corrupt(·)
4. A did not submit (i∗ ,m ∗) to GSign(gsk [·], ·).

Otherwise the experiment outputs 0. ♦

2.4.	 Group Signature Schemes with Distributed
Authorities

In group signature schemes, where both admission of group members and revocation of signer’s
anonymity are performed by the group manager, a high amount of trust into the single party,
which executes this role, becomes necessary. If the group manager’s secret key gmsk is leaked
then the anonymity of all signers is gone. The problem becomes even more severe in the
dynamic setting, where the knowledge of gmsk would allow an adversary to introduce new
group members at will, generate untraceable signatures (see the discussion on impossibility of
full traceability for dynamic schemes in Section 2.1.4), and also reveal the anonymity of honestly
admitted group members. This negative impact from the leakage of gmsk can be mitigated
by separating the duties of the group manager into two authorities: The issuer with its own
(secret) issuing key ik that is responsible solely for the admission of new members to the group,
and the opener with its (secret) opening key ok that is given the sole ability to execute the
opening procedure and identify signers. We refer to such schemes as DA-schemes.
We observe that separation of duties makes more sense for dynamic schemes, where the

issuer must be available beyond the initial key generation procedure, in order to participate
in subsequent runs of the joining protocol. In fact, static schemes could safely remove the
issuer after the key generation procedure, e.g. by explicitly erasing its secret issuing key. In
this section we will mainly discuss dynamic DA-schemes with verifiable opening procedure
that were defined in Section 2.3. Our definitions can be easily extended with the additional
mechanisms for the explicit use of user PKI and they can also be adopted to static DA-schemes
with verifiable opening and ordinary group signature schemes (static and dynamic) without
verifiable opening.

2.4.1. Algorithms of DA-Schemes and Their Correctness Property

We define group signatures with distributed authorities in Definition 2.22 by modifying the key
generation algorithm GKg, join protocol Join, and open algorithm Open to take into account the
two authorities — issuer and opener — with their respective secret keys. Note that the opening
procedure in our definition outputs proof τ , in addition to the signer’s identity i. That is our
definition assumes dynamic schemes with verifiable opening. The corresponding definitions for
schemes without verifiable opening can be obtained by omitting τ and making the opening
procedure deterministic.

Federal Office for Information Security 69

2. Group Signatures: Definitions and Security Models

Definition 2.22 (Group Signature Scheme with Distributed Authorities) A group sig­
nature scheme with distributed authorities Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open, Judge)
is a group signature scheme, where the key generation algorithm GKg, join protocol Join, and
opening algorithm Open are modified as follows:

Key generation. The randomized group key generation algorithm GKg takes as input the
security parameter 1κ , κ ∈ N and returns a tuple (gpk , ik , reg , ok), where gpk is the group
public key, ik is the secret issuing key, reg is the initially empty registration list, and ok is
the secret opening key. The issuer is given ik and full control over reg , while the opener
is given ok and read-only access to reg .

Join protocol. The randomized Join protocol is a two-party protocol composed of two
interactive algorithms (JoinM, JoinU). JoinM takes as input the secret issuing key ik and
identity i ∈ [1, n], and at the end of the interaction adds a registration entry reg [i] to the
list reg . JoinU takes as input the group public key gpk and identity i ∈ [1, n], and at the
end of the interaction outputs the secret signing key gsk [i]. If either JoinM or JoinU fails
then the respective output is set to ⊥.

Opening procedure. The randomized opening algorithm Open takes as input the secret
opening key ok , a message m, a signature σ, and the registration list reg , and returns
either a pair (i, τ) containing a signer’s identity i ∈ [1, n] and a proof τ , or (0, ⊥) (to
indicate a failure). ♦

The separation of duties between the issuer and the opener is made explicit by using ik in
the join protocol and ok in the opening procedure. The key generation procedure as defined
above can be run either by a trusted party which computes the keys and provides them to the
authorities, or through a secure two-party protocol between both authorities, depending on a
concrete instantiation of the scheme.
The following correctness property of a DA-schemes says that any opening procedure exe­

cuted by the opener on a group signature, which was generated by some valid member of the
group, previously admitted by the issuer, results in the identity of that member and that the
corresponding proof (generated by the opener) can be successfully verified by the judgement
algorithm.

Definition 2.23 (Correctness : DA) A group signature scheme with distributed authorities
Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open, Judge) is correct if for all κ, n ∈ N, all outputs
(gpk , ik , reg , ok) ← GKg(1κ), all outputs (reg [i], gsk [i]) ← (JoinM(ik , i), JoinU(gpk , i)) for any
i ∈ [1, n], and all messages m ∈ {0, 1}∗, all of the following holds:

1. GVrfy(gpk , m, GSign(gsk [i],m)) = 1

2. Open(ok , m, GSign(gsk [i],m), reg [i]) = (i, τ) with i > 0

3. Judge(gpk , m, σ, i, τ) = 1. ♦

Federal Office for Information Security 70

2. Group Signatures: Definitions and Security Models

2.4.2. Adversary Model and Oracles for DA-Schemes

The adversarial model for DA-schemes requires some changes due to the use of two distinct
authorities and their respective secret keys. In particular, the oracles Corrupt(·), GSign(gsk [·], ·),
and JoinU(gpk , ·) remain as before. The changes mainly concern the following oracles:

Add user oracle. The add user oracle AddU(·) takes as input an identity i ∈ [1, n], which does
not belong to any member of the group, executes (JoinM(ik , i), JoinU(gpk , i)) to compute
(reg [i], gsk [i]).

Join oracle. The join oracle JoinM(ik , ·) takes as input an identity i ∈ [1, n] and executes part
JoinM(ik , i) of the Join protocol, which eventually leads to the computation of reg [i].
This oracle is defined only if i does not already belong to some group member, previously
admitted via the AddU, JoinM, or JoinU oracles.

Opening oracle. The opening oracle Open(ok , ·, ·, reg) takes as input a message-signature pair
(m, σ), and returns the output of the opening algorithm Open(ok , m, σ, reg).

Remark 2.4.1 For DA-schemes with explicit user PKI the above modifications of the oracles
AddU(·) and JoinM(ik , ·) should further be augmented with appropriate mechanisms regarding
the use of (usk [i], upk [i]) in a similar way as described in Section 2.3.3.

In addition to these modified oracles the adversary model should consider adversarial access
to the registration list reg . In DA-schemes security experiments can provide A with access to
either ik or ok , or to both keys, depending on the assumed authority corruptions. If A is only
given ik , meaning that it can act on behalf of the issuer, then A should also be able to modify
entries in reg . If A is only given ok then it should be able to read registration entries. This
separation will be modeled through the following read and write oracles for the registration list
reg :

Read oracle. The read oracle RReg(·) takes as input an identity i ∈ [1, n] and outputs the
corresponding registration entry reg [i] (which may also be empty).

Read oracle. The write oracle WReg(·, ·) takes as input an identity-entry pair (i, ρ) with i ∈
[1, n] and modifies reg [i] to be ρ.

2.4.3. Anonymity Definitions for DA-Schemes

The anonymity notions for DA-schemes are similar to those of group signatures with one group
manager, except that the experiments consider malicious issuers. This models the distinguished
property of DA-schemes, namely that anonymity can be revoked only by the opener. In our
definitions of insider anonymity and full anonymity for DA-schemes we primarily consider
dynamic schemes with verifiable opening. If the DA-scheme comes with explicit user PKI then
these definitions can be further updated by providing the adversary with all PKI-certified secret
keys in usk .

Federal Office for Information Security 71

2. Group Signatures: Definitions and Security Models

Insider Anonymity

In Definition 2.24 we formalize insider anonymity for DA-schemes by updating the correspond­
ing experiment. In particular, we provide the adversary A with the secret issuing key ik , write
access to reg , and access to the oracle JoinU(gpk , ·). In this way we model the sole ability
of the opener to revoke anonymity of group members. Using JoinU(gpk , ·) oracle A can now
admit honest group members while acting on behalf of the issuer. Recall that such oracle was
not given to the anonymity adversary in dynamic schemes with one group manager as it would
have allowed A to trivially open the challenge message-signature pair (m ∗, σ∗). In DA-schemes
A can still query the opening oracle Open(ok , ·, ·, reg) to test message-signature pairs of its
choice. In order to answer these queries the experiment uses contents of reg obtained from the
queries to the write oracle WReg(·, ·).

Definition 2.24 (Insider Anonymity : DA) A group signature scheme with distributed
authorities Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open, Judge) provides insider-anonymity if
for all PPT adversaries A = (A1, A2), the following advantage function is negligible (in κ):

AdvI-AN(1κ) = Pr ExptI-AN(1κ) = 1 −
1

.Γ,A	 Γ,A 2

The associated I-AN-experiment ExptI-AN(1κ) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , ik , reg , ok).

Attack Stage I. Adversary A1 receives (gpk , ik , reg).

1.	 A1 can submit queries to the oracles JoinU(gpk , ·), Corrupt(·), GSign(gsk [·], ·), WReg(·,
·), and Open(ok , ·, ·, reg).

2.	 A1 stops and eventually outputs a tuple (st, i0, i1,m ∗) containing some state infor­
mation st, two uncorrupted identities i0, i1 ∈ [1, n], previously admitted via corre­
sponding JoinU(gpk , ·) queries, and a challenge message m ∗ .

Challenge Stage. A bit b ∈ {0, 1} is chosen at random and the signature generation algorithm
GSign(gsk [ib],m ∗) is executed to produce the challenge group signature σ∗ .

Attack Stage II. Adversary A2 receives (st, σ∗).

1.	 A2 can submit queries to the oracles JoinU(gpk , ·), Corrupt(·), GSign(gsk [·], ·), WReg(·,
·), and Open(ok , ·, ·, reg) as before, subject to the following restrictions:

a) The corruption oracle Corrupt(·) ignores queries of the form i0 and i1.

b) The opening oracle Open(ok , ·, ·, reg) ignores queries of the form (m ∗, σ∗).

2.	 A2 stops and eventually outputs a bit b∗ .

Output: If b∗ = b then the experiment outputs 1, otherwise it outputs 0.	 ♦

Federal Office for Information Security 72

2. Group Signatures: Definitions and Security Models

Full Anonymity

In Definition 2.25 we model full anonymity of DA-schemes. In contrast to insider anonymity,
we allow A to learn secret signing keys gsk [i] of all group members, including i0 and i1, by
removing restrictions on the corruption oracle Corrupt(·). Therefore, we can also remove the
signing oracle GSign(gsk [·], ·). Our definition of full anonymity is similar to the one proposed
by Bellare, Shi, and Zhang [25].

Definition 2.25 (Full Anonymity : DA) A group signature scheme with distributed au­
thorities Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open, Judge) provides full-anonymity if for all
PPT adversaries A = (A1, A2), the following advantage function is negligible (in κ):

AdvF-AN(1κ) = Pr ExptF-AN(1κ) = 1 −
1

.Γ,A	 Γ,A 2

The associated F-AN-experiment ExptF-AN(1κ) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , ik , reg , ok).

Attack Stage I. Adversary A1 receives (gpk , ik , reg).

1.	 A1 can submit queries to the oracles JoinU(gpk , ·), Corrupt(·), WReg(·, ·), and Open(ok ,
·, ·, reg).

2.	 A1 stops and eventually outputs a tuple (st, i0, i1,m ∗) containing some state in­
formation st, two identities i0, i1 ∈ [1, n], previously admitted via corresponding
JoinU(gpk , ·) queries, and a challenge message m ∗ .

Challenge Stage. A bit b ∈ {0, 1} is chosen at random and the signature generation algorithm
GSign(gsk [ib],m ∗) is executed to produce the challenge group signature σ∗ .

Attack Stage II. Adversary A2 receives (st, σ∗).

1.	 A2 can submit queries to the oracles JoinU(gpk , ·), Corrupt(·), WReg(·, ·), and Open(ok ,
·, ·, reg) as before, subject to the following restriction:

a) The opening oracle Open(ok , ·, ·, reg) ignores queries of the form (m ∗, σ∗).

2.	 A2 stops and eventually outputs a bit b∗ .

Output: If b∗ = b then the experiment outputs 1, otherwise it outputs 0.	 ♦

2.4.4. Traceability Definitions for DA-Schemes

The traceability notions for DA-schemes are similar to those of group signatures with one group
manager, except that the experiments consider coalitions of corrupted openers and malicious
group members. This is because in DA-schemes only issuers should be able to admit new group
members due to the separation of duties amongst the both authorities. Our definitions consider
primarily DA-schemes with verifiable opening. Note that if the scheme, additionally, comes with
mechanisms for user PKI then definitions need not to be updated since the adversary obtains
control over all users (and thus their PKI-certified keys usk [i]) using the JoinM(ik , ·) oracle.

Federal Office for Information Security 73

2. Group Signatures: Definitions and Security Models

Insider Traceability

In Definition 2.24 we model insider traceability of DA-schemes by providing A with the opening
key ok and the read oracle RReg(·) to allow A to open signatures on its own. Additionally, we
give A access to the JoinM(ik , ·) oracle that can be used to admit new group members while
learning their secret signing keys.

Definition 2.26 (Insider Traceability : DA) A group signature scheme with distributed
authorities Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open, Judge) provides insider traceability if
for all PPT adversaries A, the following advantage function is negligible (in κ):

AdvI-TR
Γ,A (1

κ) = Pr ExptI-TR .Γ,A (1
κ) = 1

The associated I-TR-experiment ExptI-TR
Γ,A (1

κ) proceeds as follows:

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , ik , reg , ok).

Attack Stage. Adversary A receives (gpk , ok).

1. A can submit queries to the oracles JoinM(ik , ·) and RReg(·).
2. A stops and eventually outputs a message-signature pair (m ∗, σ∗).

Output. The experiment executes the opening procedure Open(ok ,m ∗, σ∗ , reg) to obtain (i∗, τ ∗).
It then outputs 1 if all of the following holds:

1. GVrfy(gpk ,m ∗, σ∗) = 1

2. i∗ = 0 or Judge(gpk ,m ∗, σ∗, i∗, τ ∗) = 0.

Otherwise, the experiment outputs 0. ♦

Remark 2.4.2 If the DA-scheme Γ does not provide verifiable opening then the output con­
ditions of the experiment ExptI-TR

Γ,A (1
κ) should check whether Open(ok ,m ∗, σ∗ , reg) = 0 (as in

Definition 2.13).

Note that insider traceability is the strongest notion that can be satisfied by a dynamic
DA-scheme. In particular, full traceability where A would receive the issuing key ik and write
access to the registration list reg cannot be satisfied for same arguments as in Section 2.2.5.
The notion of full traceability is still meaningful for static DA-schemes. Its definition can be
obtained by providing A with both keys ik and ok .

2.4.5. Non-Frameability Definitions for DA-Schemes

The notion of non-frameability in DA-schemes can have several flavors. As before we can think
of insider non-frameability, where coalitions of malicious group members should not be able
to generate signatures that will then be traced to some honest group member. The strongest
notion is still full non-frameability where the adversary is given further access to the secret
keys of both group authorities. However, DA-schemes may also allow coalitions of malicious
group members and only one authority (either issuer or opener). These latter flavors are clearly
weaker than full non-frameability.

Federal Office for Information Security 74

2. Group Signatures: Definitions and Security Models

Insider Non-Frameability for DA-Schemes

In Definition 2.27 we formalize the notion of insider non-frameability for DA-schemes. This
definition is widely similar to full non-frameability of group signatures with one group manager,
except that it uses two different secret keys (ik and ok). Note that if the DA-scheme comes
with explicit user PKI then the adversary can be given access to the AddPKI(·, ·) oracle but the
output conditions should also check that this oracle has not been used to register i∗ .

Definition 2.27 (Insider Non-Frameability : DA) A group signature scheme with dis­
tributed authorities Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open, Judge) provides insider non­
frameability if for all PPT adversaries A, the following advantage function is negligible (in
κ):

AdvI-NF
Γ,A (1

κ) = Pr ExptI-NF .Γ,A (1
κ) = 1

The associated I-NF-experiment ExptI-NF
Γ,A (1

κ) proceeds as follows:

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , ik , reg , ok).

Attack Stage. Adversary A receives gpk .

1.	 A can submit queries to the oracles AddU(·), JoinM(ik , ·), Corrupt(·), GSign(gsk [·], ·),
and Open(ok , ·, ·, reg).

2.	 A stops and eventually outputs a tuple (m ∗, σ∗, i∗, τ ∗).

Output. If all of the following holds then the experiment outputs 1:

1. GVrfy(gpk , m ∗, σ∗) = 1
= 1

and i∗ ∈ [1, n] and Judge(gpk , m ∗, σ∗, i∗, τ ∗)

2. A did not submit i∗ to JoinM(ik , ·)
3. A did not submit i∗ to Corrupt(·)
4. A did not submit (i∗ , m ∗) to GSign(gsk [·], ·).

Otherwise it outputs 0. ♦

Remark 2.4.3 If the DA-scheme Γ does not provide verifiable opening then output conditions
of the experiment ExptI-NF

Γ,A (1
κ) should check whether Open(ok ,m ∗, σ∗ , reg) = i∗ (as in Definition

2.14).

The notion of insider non-frameability can be strengthened towards stronger coalitions of
group members with corrupted issuers and/or openers as discussed below.

Full Non-Frameability

In Definition 2.28 we formalize the notion of full non-frameability of DA-schemes. This is
done similarly to the earlier definitions, except that now A receives two keys ik and ok . In
particular, the experiment ensures that successful framing attack should be performed against a
group member i∗ previously admitted through the JoinU(gpk , ·) oracle (check that gsk [i∗] = ε)

Federal Office for Information Security 75

2. Group Signatures: Definitions and Security Models

and not corrupted thereafter. Also this definition can be adopted to schemes with explicit user
PKI by granting A additional access to the AddPKI(·, ·) oracle and prohibiting its use for the
registration of i∗ .

Definition 2.28 (Full Non-Frameability : DA) A group signature scheme with distributed
authorities Γ = (GKg, (JoinM, JoinU), GSign, GVrfy, Open, Judge) provides full non-frameability
if for all PPT adversaries A, the following advantage function is negligible (in κ):

AdvF-NF(1κ) = Pr ExptF-NF(1κ) = 1 .Γ,A	 Γ,A

The associated F-NF-experiment ExptF-NF(1κ) proceeds as follows: Γ,A

Initialization. The key generation algorithm GKg(1κ) is executed to produce (gpk , ik , reg , ok).

Attack Stage. Adversary A receives (gpk , ik , ok , reg).

1.	 A can submit queries to the oracles JoinU(gpk , ·), Corrupt(·), and GSign(gsk [·], ·).
2.	 A stops and eventually outputs a tuple (m ∗, σ∗, i∗, τ ∗).

Output. If all of the following holds then the experiment outputs 1:

1.	 GVrfy(gpk ,m ∗, σ∗) = 1 and i∗ ∈ [1, n] and Judge(gpk ,m ∗, σ∗, i∗, τ ∗)
= 1

2.	 gsk [i∗] = ε

3.	 A did not submit i∗ to Corrupt(·)
4. A did not submit (i∗ ,m ∗) to GSign(gsk [·], ·).

Otherwise it outputs 0. ♦

Remark 2.4.4 If the DA-scheme Γ does not have verifiable opening then output conditions of
the experiment ExptF-NF(1κ) should check whether Open(ok ,m ∗, σ∗ , reg ∗) = i∗, assuming that Γ,A

A additionally outputs a registration list reg ∗ (as in Definition 2.15). Instead of requiring that
A outputs reg ∗ we could also give A access to the write oracle WReg(·, ·) and use the resulting
registration list in the above check.

Finally, we observe that several intermediate flavors residing between insider and full non­
frameability can be obtained by giving A partial access to the secret keys of both authorities.
For example, A can be given as input the issuing key ik and write access to reg , but not the
opening key ok . In this case A would have to get the opening oracle but the output conditions
of experiment ExptF-NF(1κ) would remain the same. Alternatively, A can be given the opening Γ,A

key ok and the read access to reg , but not the issuing key ik . In this case one would remove
the JoinU(gpk , ·) oracle and modify the second output condition according to the experiment
for insider non-frameability from Definition 2.27.

Federal Office for Information Security 76

�	 �

3.	 Cryptographic Foundations and
Hardness Assumptions

Foundations of modern cryptography include various hardness assumptions for proving security
of cryptographic schemes and a broad spectrum of cryptographic primitives serving as build­
ing blocks for more advanced cryptographic constructs. In this chapter we introduce several
hardness assumptions and provide an overview of primitives that will become relevant in our
description of modern group signatures. We start with general assumptions that consider exis­
tence of certain types of abstractly defined functions and continue with the description of more
concrete hardness assumptions based on number theory. Additionally, we will give an overview
of several basic cryptographic building blocks and their security properties.

3.1.	 General Hardness Assumptions

We describe two general hardness assumptions — existence of one-way functions/permutations
and existence of trapdoor permutations. These assumptions are foundational for many crypto­
graphic primitives. As we will see the assumption on the existence of trapdoor permutations is
important in the context of group signatures.

3.1.1. One-Way Functions

Let f : {0, 1}∗ → {0, 1}∗ be some function. Intuitively, f is one-way if it is easy to compute but
hard to invert. While “easy to compute” requires f to be computable in polynomial time, “hard
to invert” assumes the absence of a polynomial-time algorithm for computing the pre-images
of f . This intuition is formalized in Definition 3.1.

Definition 3.1 (One-Way Function/Permutation) A function f : {0, 1}∗ → {0, 1}∗ is
one-way if all of the following holds:

Easy to compute. There exists a polynomial-time algorithm that on input x ∈ {0, 1}∗ com­
putes f(x).

Hard to invert. For all PPT algorithms A the following advantage function is negligible in κ:

x ∈R {0, 1}κ, y = f(x)
AdvOW

f,A (κ) = Pr	 : f(x ∗) = y .
x ∗ ← A(1κ, y)

77

3. Cryptographic Foundations and Hardness Assumptions

Furthermore, if f is also length-preserving (|f(x)| = |x| for all x ∈ {0, 1}∗) and if its restric­
tion to the domain {0, 1}κ is a bijection then f is a one-way permutation. If f is a one-way
permutation then any value y in its range uniquely determines the corresponding pre-image x.
♦

The existence of one-way functions is an unproven assumption. Nevertheless, cryptographic
constructions often use computational problems like integer factorization or computation of
discrete logarithms (cf. Section 3.2.2) as candidates for such functions due to the absence of
(efficient) polynomial-time algorithms that can solve these problems for an appropriate choice
of security parameters; despite of much attention that those problems have received in the past.

3.1.2. Trapdoor Permutations

Let f : {0, 1}∗ → {0, 1}∗ be some function. Intuitively, f is a trapdoor permutation if f is
a one-way permutation, for which there exists an associated (secret) trapdoor information td
allowing to efficiently compute the pre-images of f . This intuition is formalized in Definition
3.2.

Definition 3.2 (Trapdoor Permutation) A function f : {0, 1}∗ → {0, 1}∗ with an associ­
ated trapdoor information td ∈ {0, 1}κ , κ ∈ N is a trapdoor permutation if all of the following
holds:

One-way permutation. If td is kept secret then f has the same properties as a one-way per­
mutation from Definition 3.1.

Easy to invert with a trapdoor. There exists a PPT algorithm that for all x ∈ {0, 1}∗ on
input td and y = f(x) outputs x. ♦

Note that the easy inversion with the trapdoor does not contradict the function’s one-wayness,
because the trapdoor is not part of the function’s output and is therefore not part of A’s input.
Obviously, any trapdoor permutation is also a one-way permutation. On the other hand, not
every one-way permutation can be associated with a trapdoor. Therefore, the assumption
on the existence of trapdoor permutations is strictly stronger than on the existence of one­
way functions. As we will see, existence of trapdoor permutations is likely to be the weakest
assumption needed to construct secure group signatures, unlike ordinary signatures that can
be constructed from one-way functions. Although existence of trapdoor permutations is an
unproven assumption, a well-known candidate for a trapdoor permutation is the permutation
used by the RSA cryptosystem (cf. Section 3.2.1).

3.2. Number-Theoretic Hardness Assumptions

While general assumptions are helpful to assess security of cryptographic schemes from the
theoretical point of view many practical cryptographic constructions require assumptions based
on number-theory. In this section we give an overview of three number-theoretic settings that
have been used in the design of modern group signature schemes. These include the RSA

Federal Office for Information Security 78

� �

 � �

3. Cryptographic Foundations and Hardness Assumptions

setting, the DL setting, and the setting of bilinear maps, which can be seen as a special case
of the DL setting with richer algebraic properties. In our description we will assume that the
reader is familiar with basic number-theoretic concepts used in cryptography that can be found,
for example, in the book of Shoup [171].

3.2.1. Assumptions in the RSA Setting

The RSA setting is based on an algorithm RSAGen that on input a security parameter 1κ ,
κ ∈ N outputs a tuple of integers (N, p, q) such that N = pq is of length κ, and p, q are prime
numbers. N is called RSA modulus. Moreover, if p, q are safe primes, i.e. p = 2p ' + 1 and

' ' ' q = 2q + 1 with p and q being primes as well, then the RSA modulus N is called safe. It is
widely assumed that factoring N , that is computing its prime factors p and q, is hard if these
factors are sufficiently large. The RSA setting admits further hardness assumptions that we
will use in our description of group signatures and introduce in the following.

Definition 3.3 (Strong RSA Assumption (SRSA)) Let RSAGen be an algorithm that out­
puts (N, p, q) with N being a (safe) RSA modulus and let G = (g) denote a cyclic subgroup
of Z∗ of order Q with length |Q| = κ. The Strong RSA (SRSA) assumption says that for all N

PPT algorithms A the following advantage function is negligible in κ:

AdvSRSA (N, p, q) ← RSAGen(1κ), z ∈R G, u ∈ G, e ∈ Z>1
RSAGen,A(κ) = Pr : .

(u, e) ← A(N, g, z) ue = z (mod N)

♦

A frequent choice for G in the context of group signatures is the group of quadratic residues
modulo N , denoted QR(N). This group of order p ' q ' is generated by an element g ∈ ZN . An
appropriate generator g can be chosen by picking a ∈ Z∗ such that gcd(a ± 1, N) = 1, in which N

case g = a2 mod N . Security of several group signatures, where the QR(N) group is used,
relies further on the following assumption.

Definition 3.4 (Decision Diffie-Hellman (DDH) Assumption in QR(N)) Let RSAGen
be an algorithm that outputs (N, p, q) with N being a (safe) RSA modulus and let QR(N) = (g)
denote the group of quadratic residues modulo N of order p ' q ' of length κ. The Decision
Diffie-Hellman (DDH) assumption in QR(N) says that for all PPT algorithms A the following
advantage function is negligible in κ:

(N, p, q) ← RSAGen(1κ), x, y, z ∈R Zplql , 1
AdvDDH Pr : b = b∗ − .RSAGen,A(κ) =

g0 = gxy, g1 = gz, b ∈R {0, 1}, b∗ ← A(N, g, gx, gy, gb) 2

♦

The DDH assumption in QR(N) groups is a special type of the more general DDH assump­
tion, which can be defined over cyclic groups G of prime order (cf. Definition 3.6). Interestingly,
in QR(N) groups the DDH assumption is assumed to hold, irrespective of whether the factors
p and q of the RSA modulus N are known or not.

Federal Office for Information Security 79

� �

 � �

3. Cryptographic Foundations and Hardness Assumptions

3.2.2. Assumptions in the DL Setting

The Discrete Logarithm (DL) setting is based on an algorithm GenG that on input a security
parameter 1κ , κ ∈ N outputs the description of a cyclic group (G, g, Q) where g is the generator
and the order Q is prime and of length κ. The DL setting admits the following hardness
assumptions that we will refer to in the constructions of group signature schemes.

Definition 3.5 (Discrete Logarithm (DL) Assumption) Let GenG be an algorithm that
outputs the description of a cyclic group (G, g, Q) with Q prime and |Q| = κ. The Discrete
Logarithm (DL) assumption says that for all PPT algorithms A the following advantage function
is negligible in κ:

(G, g, Q) ← GenG(1κ), h ∈R G, x ∈ ZQAdvDL
GenG,A(κ) = Pr : .xx ← A(G, g, Q, h) g = h

♦

A popular example of a suitable group, often used in cryptographic schemes, is a subgroup
G ⊂ ZP of a prime order Q|P − 1 where P is also prime.
Furthermore, the DDH assumption introduced for QR(N) groups in the previous section

(cf. Definition 3.4) can be generalized to cyclic groups of prime order. For example, IND-CPA
security of the well-known ElGamal encryption scheme [88] relies on the DDH assumption.

Definition 3.6 (Decision Diffie-Hellman (DDH) Assumption in Groups of Prime Order)
Let GenG be an algorithm that outputs the description of a cyclic group (G, g, Q) with Q prime
and |Q| = κ. The Decision Diffie-Hellman (DDH) assumption in G says that for all PPT
algorithms A the following advantage function is negligible in κ:

(G, g, Q) ← GenG(1κ), x, y, z ∈R ZQ, 1
AdvDDH Pr : b = b∗ − .GenG,A(κ) =

g0 = gxy, g1 = gz, b ∈R {0, 1}, b∗ ← A(g, gx, gy, gb) 2

♦

3.2.3. Assumptions in the Setting of Bilinear Maps

The cryptographic setting of bilinear maps, also known as pairings serves as a basis for many
modern group signature schemes as it provides richer algebraic structure in comparison to the
DL and RSA settings. The setting of bilinear maps is based on an algorithm GenBG that on
input a security parameter 1κ , κ ∈ N outputs the description of two cyclic groups (G1, g1, Q) and
(G2, g2, Q) of prime order Q of length κ and respective generators g1 and g2 with an associated
bilinear map e : G1 × G2 → GT where GT is another cyclic group (called target group) of
order Q. The corresponding groups G1 and G2 are called bilinear if they satisfy the following
definition.

Definition 3.7 (Bilinear Groups) Let GenBG be an algorithm that outputs the description
of two cyclic groups G1 = (g1) and G2 = (g2) of prime order Q with |Q| = κ, where possibly

Federal Office for Information Security 80

� �

3. Cryptographic Foundations and Hardness Assumptions

G1 = G2, and the description of e : G1 ×G2 → GT with GT being another cyclic group of prime
order Q. The group pair (G1, G2) is called bilinear if the following holds:

1. Efficiency: The bilinear map e : G1 × G2 → GT can be computed in polynomial-time.

a2. Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ ZQ: e(u , vb) = e(u, v)ab .

3. Non-degeneracy: e(g1, g2) = 1.

There can further exist an efficiently computable homomorphism ψ from G2 to G1 with ψ(g2) =
g1. ♦

Depending on the choice of the input groups (G1, G2) and existence of the homomorphism
ψ, the associated pairing e : G1 × G2 → GT can be classified as follows (see also Galbraith,
Paterson, and Smart [95]).

Definition 3.8 (Bilinear Maps: Classification) Let (G1, G2) be bilinear groups and e :
G1 × G2 → GT the associated bilinear map according to Definition 3.7.

Type-1. e is of Type-1 if G1 = G2.

Type-2. e is of Type-2 if G1 = G2 and there exists an efficiently computable homomorphism
ψ : G2 → G1.

Type-3. e is of Type-3 if G1 = G2 and there exists no efficiently computable homomorphism
ψ : G2 → G1.

♦

In general, different pairing types may admit different hardness assumptions and result in
more or less efficient implementations. For example, the DDH assumption does not hold in
Type-1 pairings. Indeed, if G1 = G2 and the corresponding generator is g then for a given
problem instance (g, gx, gy, gb) one can easily distinguish the corresponding bit b by testing
whether e(gx, gy) = e(gb, g). In Type-2 pairings the DDH assumption is assumed to hold only
in the input group G1, whereas in Type-3 pairings the DDH assumption is assumed to hold in
both input groups G1 and G2. From the efficiency point of view, Type-3 pairings admit the
most efficient implementations, considering both bandwidth and computation costs.
In the following we focus on some number-theoretic hardness assumptions, frequently used in

the design of group signatures. We start with the q-Strong Diffie-Hellman (q-SDH) assumption,
which was introduced by Boneh and Boyen [35]. It is one of the most popular assumptions
used to prove security of various signature and group signature schemes.

Definition 3.9 (q-Strong Diffie-Hellman (q-SDH) Assumption) Let GenBG be an algo­
rithm that outputs a pair of bilinear groups G1 = (g1) and G2 = (g2) of prime order Q with
|Q| = κ, and the associated bilinear map e : G1 × G2 → GT . The q-Strong Diffie-Hellman
(q-SDH) assumption in (G1, G2) with q ∈ N says that for all PPT algorithms A the following
advantage function is negligible in κ:

γ ∈R ZQ 1

Advq−SDH γ+x
GenBG,A(κ) = Pr γ (γ2) (γq) : x ∈ ZQ∗ , g = g .

(g, x) ← A(g1, g2, g 2 , g2 , . . . , g2) 1

Federal Office for Information Security 81

 � �

 � �

�

�

3. Cryptographic Foundations and Hardness Assumptions

♦

The following Decision Linear (DLIN) assumption was introduced by Boneh, Boyen, and
Shacham [36]. It serves as a basis of the Linear Encryption scheme, which can be seen as an
analog of the ElGamal encryption scheme in bilinear groups, most frequently in Type-1 pairings,
where the original DDH problem is not necessarily hard. We define the DLIN assumption in the
setting of bilinear maps, where it is traditionally used. However, we note that DLIN assumption
can also be formulated in the standard DL setting using the corresponding algorithm GenG.

Definition 3.10 (Decision Linear (DLIN) Assumption) Let G = (g) be one of the bilin­
ear groups of prime order Q with |Q| = κ output by an algorithm GenBG, and u, v, and h be
arbitrary generators of G. The Decision Linear (DLIN) assumption in G says that for all PPT
algorithms A the following advantage function is negligible in κ:

AdvDLIN u, v, h ∈R G, α, β, γ ∈R ZQ, h0 = hα+β , h1 = hγ 1
Pr : b = b∗ − .GenBG,A(κ) =

b ∈R {0, 1}, b∗ ← A(u, v, h, uα, vβ , hb) 2

♦

It can be shown that an algorithm breaking the DLIN Assumption in G can be used to solve
the DDH problem in G while the converse is believed to be false.
The following Decision Bilinear Diffie-Hellman (DBDH) assumption was introduced by Boneh

and Boyen [34].

Definition 3.11 (Decision Bilinear Diffie-Hellman (DBDH) Assumption) Let G = (g)
be one of the bilinear groups of prime order Q with |Q| = κ output by an algorithm GenBG. The
Decision Bilinear Diffie-Hellman (DBDH) assumption in G says that for all PPT algorithms
A the following advantage function is negligible in κ:

AdvDBDH a, b, c, d ∈R ZQ, h0 = e(g, g)abc, h1 = e(g, g)d 1
GenBG,A(κ) = Pr b : b = b∗ − .ab ∈R {0, 1}, b∗ ← A(g, g , g , gc, hb) 2

♦

The following LRSW assumption was introduced by Lysyanskaya et al. [135]. The LRSW
assumption is defined for general prime order groups G, however, we will use it mostly in the
context of bilinear groups with G being one of the input groups (i.e. G1 or G2). Additionally,
we mention the asymmetric version of the LRSW assumption, which explicitly takes inputs
from both input groups G1 and G2.

Definition 3.12 (LRSW Assumption) Let G = (g) be a group of prime order Q with
|Q| = κ and X, Y ∈ G with X = gx and Y = gy. Let OX,Y (·) be an oracle that, on input a
value m ∈ ZQ, outputs a triple (a, ay, ax+mxy) for a randomly chosen a ∈ G.
The LRSW assumption in G says that for all PPT algorithms A the following advantage

function (where Q is the set of queries A poses to OX,Y (·)) is negligible in κ:

AdvLRSW x ∈R ZQ, y ∈R ZQ, X = gx, Y = gy m ∈ Q,m ∈ ZQ,m = 0
(κ) = Pr : .A y x+mxy(m, a, b, c) ← AOX,Y (·)(Q, G, g, X, Y) a ∈ G, b = a , c = a

Federal Office for Information Security 82

3. Cryptographic Foundations and Hardness Assumptions

The asymmetric version of the LRSW assumption employs two different groups G1 = (g1)
and G2 = (g2), both of prime order Q with |Q| = κ, such that a ∈ G1, whereas X, Y ∈ G2. ♦

The following SDLP assumption was introduced by Bichsel et al. [31].

Definition 3.13 (SDLP Assumption) Let G1 = (g1), G2 = (g2) be bilinear groups of prime
order Q with |Q| = κ with the associated bilinear map e.
The SDLP assumption in (G1, G2) says that for all PPT algorithms A the following advantage

function is negligible in κ:

AdvSDLP ∗ µ µ ∗
A (κ) = Pr µ ∈R ZQ, µ ← A(Q, G1, G2, g1, g2, e, g1 , g2) : µ = µ .

♦

3.3. Hash Functions

Cryptographic hash functions are functions that map binary strings of arbitrary length to a
string of a constant length with the additional property of collision-resistance, meaning that it
is difficult to find two distinct input strings that would result in the same output. Traditionally,
cryptographic hash functions are defined in terms of families of functions where some particular
function from the family is selected by specifying its public index.

Definition 3.14 (Collision-Resistant Hash Function) A family of hash functions {Hashk :
{0, 1}∗ → {0, 1}Y(k) | k ← Kg(1κ)} is called collision-resistant if the following advantage function
is negligible in κ:

AdvCOL
Hash,A(κ) = Pr (x, y) ← A(k) : x = y and Hashk(x) = Hashk(y) .

Using notation Hash : {0, 1}∗ → {0, 1}κ we implicitly assume that the length of the output
corresponds to the security parameter 1κ of the function. ♦

In the context of digital signatures that we discuss in Section 3.4 and also group signatures,
as we will see in later sections, cryptographic hash functions are typically used in the so-called
“hash-then-sign” approach, where a hash function Hash is first applied to some message m of
an arbitrary length to obtain the constant-length hash value Hash(m), which is then processed
by the signing algorithm of the scheme.

3.3.1. The Random Oracle Model

Many cryptographic constructions, including various group signature schemes, that utilize a
hash function Hash : {0, 1}∗ → {0, 1}κ as one of their building blocks can be proven secure
only in the so-called Random Oracle Model (ROM) introduced by Bellare and Rogaway [24].
This model makes a non-standard assumption on the computation and distribution of hash
values. In particular, it assumes that computation of Hash(m) cannot be performed by an
algorithm on its own but requires assistance of some “magic” party, called random oracle, that
on input m outputs Hash(m), and that these outputs are uniformly distributed in {0, 1}∗ while

Federal Office for Information Security 83

3. Cryptographic Foundations and Hardness Assumptions

preserving the deterministic nature of the hash function, in that any two different invocations
of the random oracle on the same input result in the same output. This setting essentially
assumes that Hash is the random oracle. Obviously, this assumption is very strong since given
the description of some (practical) hash function Hash one could easily compute Hash(m) on
any given input m. Therefore, ROM is primarily seen as methodology for proving security of
cryptographic schemes, that is in the security proof hash function Hash used in the construction
is replaced with the random oracle. In particular, this means that the adversary against some
security property of the scheme can neither compute Hash(m) without querying the random
oracle Hash nor derive any information about m when given only Hash(m). A more detailed
information about the ROM methodology can also be found in the book by Katz and Lindell
[116]. It should, furthermore, be noted that not every cryptographic scheme that uses hash
functions automatically requires ROM. Security proofs, in which Hash need not be a random
oracle but a collision-resistant hash function are typically referred to as being performed in the
standard model. On the other hand, using ROM to prove security of a cryptographic scheme
is still better than claiming security of the scheme without any proof.

3.4. Digital Signatures

Digital signatures can be used for the purpose of authentication and identification. These
cryptographic primitives are frequently used as building blocks in cryptographic protocols,
including group signatures. In the following we provide basic definitions of digital signature
schemes and their security. For a more detailed treatment of many known digital signature
schemes and their security properties we refer to the book of Katz [115].

Definition 3.15 (Digital Signature) A digital signature scheme Σ = (Kg, Sign, Vrfy) con­
sists of three polynomial-time algorithms:

Key generation. The randomized key generation algorithm Kg takes as input a security pa­
rameter 1κ , κ ∈ N, and outputs a private/public key pair (sk , pk).

Signature generation. The signature generation algorithm Sign takes as input a secret key sk
and a message m ∈ {0, 1}∗, and outputs signature σ.

Verification procedure. The deterministic verification algorithm Vrfy takes as input a public
key pk , a message m ∈ {0, 1}∗, and a candidate signature σ and outputs 1 (indicating
that σ is valid) or 0.

A signature scheme Σ is correct if for all κ ∈ N, all (sk , pk) ← Kg(1κ), and all messages
m ∈ {0, 1}∗ :

Vrfy(pk , m, Sign(sk ,m)) = 1.

A digital signature scheme must satisfy at least the following security requirement of (exis­
tential) unforgeability, which is modeled through the experiment, in which a PPT adversary
A is allowed to obtain valid signatures on messages of its choice (through the signing oracle
Sign(sk , ·)) and its goal is to come up with a valid σ∗ on some message m ∗, possibly of A’s
choice, that has not been signed before.

Federal Office for Information Security 84

� �

3. Cryptographic Foundations and Hardness Assumptions

Definition 3.16 (Unforgeability of Signatures) A digital signature scheme Σ = (Kg, Sign,
Vrfy) provides unforgeability if for all PPT adversaries A the following advantage function is
negligible in κ:

(sk , pk) ← Kg(1κ), Vrfy(pk ,m ∗, σ∗) = 1
AdvUNF

Σ,A (κ) = Pr
(m ∗, σ∗) ← ASign(sk ,·)(pk)

: A did not submit m ∗ to Sign(sk , ·) .

♦

As already noticed, signing of arbitrarily long messages can be realized using the “hash-then­
sign” approach. The collision-resistance property of the hash function contributes in this case
to the unforgeability requirement of the scheme.

3.5. Public-Key Encryption

In order to allow confidential communication and exchange of data cryptography offers a variety
of encryption schemes. In the context of group signatures of prime interest are public key
encryption schemes.

Definition 3.17 (Public Key Encryption (PKE)) A public key encryption (PKE) scheme
Θ = (Kg, Enc, Dec) consists of three polynomial-time algorithms:

Key generation. The randomized key generation algorithm Kg takes as input a security pa­
rameter 1κ , κ ∈ N, and outputs a private/public key pair (sk , pk).

Encryption procedure. The randomized encryption algorithm Enc takes as input a public key
pk and a message m ∈ {0, 1}∗, and outputs ciphertext c.

Decryption procedure. The deterministic decryption algorithm Dec takes as input a private
key sk and a ciphertext c and outputs either m (indicating that m could be correctly
decrypted) or ⊥ (if some failure occurred).

A PKE scheme Θ is correct if for all κ ∈ N, all (sk , pk) ← Kg(1κ), and all messages m ∈ {0, 1}∗ :

Dec(sk , Enc(pk ,m)) = m.

A PKE scheme Θ typically satisfies one of the following notions of security, which prevents
information leakage about the encrypted message m. Both notions can only be achieved if the
encryption algorithm is randomized.

Definition 3.18 (IND-CCA/IND-CPA Security) A public key encryption scheme Θ =
(Kg, Enc, Dec) provides indistinguishability against chosen ciphertext attacks (IND-CCA) if for
all PPT adversaries A = (A1, A2) the following advantage function is negligible in κ: ⎡
 ⎤

(sk , pk) ← Kg(1κ),
Dec(sk ,·)

(pk) b∗⎢⎢⎣

⎥⎥⎦
−

(st, m0,m1) ← A = b

AdvIND-CCA

Θ,A (κ) = Pr
 1 :
 .

b ∈R {0, 1}, c ← Enc(pk ,mb)

Dec(sk ,·)
b∗

A did not submit c to Dec(sk , ·)

← A2 (st, c)

Federal Office for Information Security

1
2

85

3. Cryptographic Foundations and Hardness Assumptions

If in the above experiment A = (A1, A2) is not given access to the decryption oracle Dec(sk , ·)
and the corresponding advantage function AdvIND-CPA (κ) remains negligible in κ then Θ is said Θ,A

to provide indistinguishability against chosen plaintext attacks (IND-CPA).
There also exists a weaker notion of IND-CCA security often called IND-CCA1 (with the

above definition being IND-CCA2), where only A1 is given access to the decryption oracle
Dec(sk , ·). ♦

3.6. Commitment Schemes

Cryptographic commitment schemes, defined in the following, are useful building blocks for
applications where a party should commit to some value without actually revealing information
about this value and then at some later stage disclose this value without being able to modify
it. A typical example for the use of commitment schemes can be found in auctions where during
the bidding phase competitors submit commitments on their bids and later disclose their bids
in order to estimate the winner.

Definition 3.19 ((Non-Interactive) Commitment Schemes) A (non-interactive) commitment
scheme Ξ = (Kg, Commit, Vrfy) consists of three polynomial-time algorithms defined as follows:

Key generation. The randomized key generation algorithm Kg takes as input a security pa­
rameter 1κ ,κ ∈ N, and outputs the commitment public key ck . It is implicitly assumed
that ck determines the message space M and a randomizer space R.

Commitment generation. The randomized commitment algorithm Commit takes as input ck ,
message m ∈M, and randomizer r ∈R R, and outputs a commitment c.

Verification procedure. The randomized verification algorithm Vrfy takes as input ck , m ∈M,
r ∈ R, and a candidate commitment c, and outputs either 1 (indicating that commitment
c is valid for the message m) or 0.

A commitment scheme Ξ is correct if for all κ ∈ N, all ck ← Kg(1κ), all messages m ∈ M, all
randomizers r ∈ R and c ← Commit(m, r): Vrfy(ck , m, r, c) = 1.

Commit(m, r) will denote the output of the commitment algorithm with ck as an implicit
input. Sometimes we will write c = Commit(m, r) instead of Vrfy(c, m, r) assuming that c can
be recomputed from the opening (m, r). ♦

There are two main security properties that should be satisfied by any commitments scheme:
(1) hiding which protects leakage of information about the committed message m from the
corresponding commitment c, and (2) binding which ensures that some particular commitment
c can only be opened to the originally committed message m.
A simple example of a commitment scheme is due to Pedersen [159] that uses some cyclic

group G = (g) of prime order Q, possibly in the DL setting or in QR(N) groups with safe
RSA modulus N . The public commitment key is ck = (g, h) for some h ∈R G for which the
discrete logarithm logg h remains unknown. In order to commit to some message m ∈ ZQ the

Federal Office for Information Security 86

3. Cryptographic Foundations and Hardness Assumptions

algorithm chooses a randomizer r ∈R ZQ and outputs the commitment c = gmhr . To open
this commitment c the algorithm outputs the initially used message-randomizer pair (m, r),
allowing the verification algorithm to recompute c and compare it with the initially received
commitment.
In group signature schemes commitments are widely used during the signature generation

procedure and in combination with (non-interactive) zero-knowledge proofs and signatures of
knowledge which we briefly introduce in the next section.

3.7.	 Zero-Knowledge Proofs and Signatures of
Knowledge

Let R be a polynomial time decidable binary relation for pairs (C, w) ∈ R consisting of a
statement C and a witness w. Let LR be the NP-language of statements C that have witnesses
w of length κ in R, i.e. LR = {C | ∃w, |w| = κ and (C, w) ∈ R}. Statements may have several
witnesses, i.e. there might exist a set of witnesses w(C) such that (C, w) ∈ R for all w ∈ w(C).

3.7.1. Zero-Knowledge Proofs of Knowledge (ZKPoK)

The main goal behind zero-knowledge proofs of knowledge (ZKPoK) is to allow some prover P
being in possession of some secret w to prove to some verifier V that P knows the secret and
that this secret satisfies some relation. An illustrative example is where a prover is in possession
of some private/public key pair (sk , pk) and wishes to prove the knowledge of sk to a verifier V
who knows pk . Clearly, a ZKPoK proof for this task should not reveal sk nor should it put any
third party (an adversary) in position where it can produce convincing proof without knowing
sk . We proceed with the notations and definitions of ZKPoK proofs.
ZKPoK protocols are defined between two PPT algorithms P and V , in which P tries to

convince V to accept the proof. ZKPoK protocols should satisfy several properties as defined
in Definition 3.20. The correctness property means that V accepts proofs for valid statements.
The soundness property prevents P from cheating, which is the case if C ∈ LR. The proof
of knowledge (PoK) property requires that if V accepts the proof then P must have known
the corresponding witness. The zero-knowledge (ZK) property roughly means that the proof
does not leak any information to the verifier, i.e. everything a verifier can compute through an
interaction with the honest prover, can also be computed from the same inputs without this
interaction.

Definition 3.20 (Zero-Knowledge Proof of Knowledge) Let LR be an NP-language and
R the corresponding binary relation. A pair of interactive PPT algorithms (P, V) is called
zero-knowledge proof of knowledge (ZKPoK) if it satisfies the following properties:

Completeness. For all C ∈ LR and w ∈ w(C), the probability that the verifier V (C) accepts
in its interaction with the prover P (C, w) is 1.

Soundness. For all C ∈ LR the probability that the verifier V (C) accepts in its interaction
with a PPT prover P ∗ is negligible (in κ).

Federal Office for Information Security 87

3. Cryptographic Foundations and Hardness Assumptions

PoK property. For all C ∈ LR, if the verifier V (C) accepts the proof in its interaction with a
PPT prover P ∗ then there exists a PPT extractor E that on input C interacts with P ∗ ,
and outputs w ' ∈ w(C) with probability being non-negligible (in κ).

ZK property. For all (C, w) ∈ R and any PPT verifier V ∗ interacting with the prover P (C, w),
there exists a PPT simulator S that on input C produces outputs that are indistinguish­
able from the outputs of V ∗ .
The ZK property is called: (i) perfect if the probability of distinguishing the above outputs
is 0 even for an unbounded distinguisher; (ii) statistical if this probability is c > 0 even
for an unbounded distinguisher, and (iii) computational if this probability is negligible
(in κ) for a probabilistic polynomial-time distinguisher.

Since relations R and statement C can vary depending on the actual ZKPoK protocol we
will be using the following notation for ZKPoK proofs on input a secret witness w testifying
that (C, w) ∈ R for some public statement C and relation R:

ZKPoK witness w : relation R that (C, w) must satisfy
For example, ZKPoK x : y = gx denotes a zero-knowledge proof that the prover knows
the discrete logarithm of y with respect to the base g. In this case g and y are public values,
seen as part of the statement C, whereas x corresponds to the private witness w, R is given
through the equality relation.
Although ZKPoK protocols can be constructed for all NP languages LR, practical group

signature schemes usually require proofs for languages that are believed to be in NP, i.e. where
the intractability of a witness w from a statement C ∈ LR relies on some number-theoretic
assumption, like the above proof for the equality of discrete logarithms. ZKPoK protocols for
such languages typically require three protocol messages and are called Σ-protocols: The first
message CMT (commitment) is computed by P on input (C, r) where r is some random string.
The second message CH (challenge) is chosen by V in an unpredictable way and independent
of CMT . The final message RSP (response) is computed by P on input (w, r, CMT, CH). At
the end of the interaction V , given (C, CMT, CH, RSP), can verify the validity of the proof. In
order to obtain perfect ZK property against malicious verifiers V ∗, the challenge CH is usually
set to be a random bit b. Indeed, this allows for the construction of a simulator S for the ZK
property that can generate indistinguishable protocol transcripts with probability

2
1 . In this

case, however, the soundness property holds also with probability 1
2 since this is the probability

with which a malicious prover P ∗ can guess CH. Therefore, in order to preserve soundness
such protocol has to be executed between P and V sequentially κ-times, thus decreasing a
successful attack of malicious provers P ∗ against the soundness property to 2−κ . Executing
protocols κ-times is rather undesirable in practice. Therefore, challenge CH is typically chosen
to be a random string from {0, 1}κ . This change results, however, in a simulation problem for
the ZK property. The reason is that a malicious verifier V ∗ might choose CH not truly at
random but according to some distribution, which is not known to S. Therefore, Σ protocols
satisfy a weaker ZK property, termed honest-verifier ZK, where the ZK property holds only
against verifiers V that choose their challenges truly at random (as required by the protocol).
Such honest-verifier ZKPoK proofs are still sufficient for many applications, including group
signatures.

Federal Office for Information Security 88

3. Cryptographic Foundations and Hardness Assumptions

As an illustrative example we consider the above mentioned proof ZKPoK x : y = gx ,
where we assume that g, y are elements of a cyclic group G = (g) of prime order Q. The
(honest-verifier) ZKPoK protocol runs as follows: Prover P picks random rx ∈R ZQ and sends
commitment CMT = grx to the verifier V , which in turn replies with a random challenge
CH ∈R ZQ (of length κ). The prover P then computes its response as RSP = rx − CH ·

RSP CH x mod Q, allowing V to check its validity through the comparison CMT = g y .

3.7.2.	 Non-Interactive Zero-Knowledge Proofs of Knowledge
(NIZKPoK)

Non-interactive zero-knowledge proofs of knowledge (NIZKPoK) are protocols where the prover
P can compute the proof without involvement of the verifier V . That is, V receives a statement­
proof pair (C, π) from P and should be able to check its validity without further communication
with the prover. NIZKPoK proofs are formulated in the common reference string (CRS) model,
which assumes that both algorithms P and V have access to some universal random string ρ.
Therefore, NIZKPoK protocols have an additional generation algorithm K which on input some
security parameter 1κ , κ ∈ N outputs ρ. In Definition 3.21 we state main requirements on a
NIZKPoK proof. These are similar to those of interactive ZKPoK proofs, except for some
modifications regarding the CRS string.

Definition 3.21 (Non-Interactive ZKPoK) Let LR be an NP-language and R the corre­
sponding binary relation. A tuple of PPT algorithms (K, P, V) is called non-interactive zero­
knowledge proof of knowledge (NIZKPoK) if it satisfies the following properties:

Completeness. For all CRS ρ ←R K(1κ), all statement-witness pairs (C, w) ∈ R, and all
proofs π ←R P (ρ, C, w), the probability that V (ρ, C, π) accepts is 1.

Soundness. For all CRS ρ ←R K(1κ) and all statement-candidate proofs (C, π∗) ←R P ∗(ρ)
with C ∈ LR, the probability that V (ρ, C, π∗) accepts is negligible (in κ).

PoK property. There exists a PPT extractor E = (E1, E2) with the following two properties:

a) Algorithm E1 on input 1κ generates pairs (ρ, st) such that for all PPT provers P ∗ ,
the probability with which P ∗ distinguishes, whether ρ was computed by E1(1

κ) or
by K(1κ) is negligible (in κ).

b) For all outputs (ρ, st) generated by E1(κ), all PPT provers P ∗ that on input ρ output
a pair (C, π∗) with C ∈ LR, algorithm E2 on input (ρ, st, C, π∗) outputs w ∈ w(C)
with probability being non-negligible (in κ).

ZK property. There exists a PPT simulator S = (S1, S2) with the following properties:

a) Algorithm S1 on input 1κ generates pairs (ρ, st) such that for all PPT verifiers V ∗ ,
the probability with which V ∗ distinguishes, whether ρ was computed by S1(1

κ) or
by K(1κ) is negligible (in κ).

Federal Office for Information Security 89

3. Cryptographic Foundations and Hardness Assumptions

b) For all (ρ, st) generated by S1(κ), all PPT verifiers V ∗, the probability that V ∗ with
input ρ, for any statement-witness pairs (C, w) ∈ R distinguishes between outputs
of the prover P (ρ, C, w) and outputs of the algorithm S2(ρ, st, C) is negligible (in
κ).

Also NIZKPoK proofs exist for all NP languages LR. However, we will be mainly concerned
with proofs that can be obtained from interactive Σ-protocols mentioned above. Indeed, any
Σ-protocol can be converted to a corresponding NIZKPoK proof using the Fiat-Shamir trans­
formation [89]. This transformation uses a collision-resistant hash function Hash : {0, 1}∗ →
{0, 1}κ to compute the challenge message CH out of the statement C and commitment CMT .
This prevents a malicious prover P ∗ from being able to modify the commitment CMT after
obtaining the challenge CH, which is exactly the property ensured in Σ-protocols through
interaction. The security of NIZKPoK proofs obtained through Fiat-Shamir transformation
requires, however, an additional assumption, namely that the hash function Hash behaves like
a random oracle (cf. Section 3.3.1). Note that any NIZKPoK protocol obtained in this way has
thus its interactive counterpart, which is an honest-verifier ZKPoK, whose security does not
necessarily require random oracles.
Similarly to ZKPoK proofs, we will use the following notation while referring to non-interactive

zero-knowledge proofs of knowledge for some (C, w) ∈ R:

NIZKPoK witness w : relation R that (C, w) must satisfy

We implicitly assume that such NIZKPoK proof contains all information about C and R that
is necessary to check its validity.

Examples of NIZKPoK Proofs

In the following we list several examples of NIZKPoK proofs to give an impression of how
different types of relations can be handled in practice. We assume that G = (g) is a cyclic
group, generated by g and that the order of G is of length κ1 ∈ N. By c > 1 we denote
another security parameter, that is used to control the so-called tightness of the statistical
zero-knowledge property of these protocols. As mentioned before, NIZKPoK proofs obtained
from the use of Fiat-Shamir transformation [89] use a hash function Hash : {0, 1}∗ → {0, 1}κ2 ,
which must be modeled as a random oracle.

Definition 3.22 (NIZKPoK of a Discrete Logarithm) Let g, y ∈ G. A pair (c, s) ∈
s{0, 1}κ2 ×±{0, 1}Y(κ1+κ2)+1 satisfying c = Hash(g, y, g yc) is a NIZKPoK proof for the knowledge

of the discrete logarithm of y with respect to the base g, denoted

NIZKPoK x : y = gx .

This proof can be computed by choosing a random rx ∈R ±{0, 1}Y(κ1+κ2) and then computing

rx)c = Hash(g, y, g and s = rx − cx.

♦

Federal Office for Information Security 90

3. Cryptographic Foundations and Hardness Assumptions

Definition 3.23 (NIZKPoK of a Representation) Let g1, . . . , gn, y ∈ G. A tuple (c, s1,
. . . , sn) ∈ {0, 1}κ2 × (±{0, 1}Y(κ1+κ2)+1)n satisfying c = Hash(g1, . . . , gn, y, g s1 · · · gsn · yc) is a 1 n

NIZKPoK proof for the the discrete logarithm-based representation of y1 with respect to the
bases g1, . . . , gn, denoted

x1 xnNIZKPoK x1, . . . , xn : y = g1 · · · gn .

This proof can be computed by choosing random rxi ∈R ±{0, 1}Y(κ1+κ2) for all i = 1, . . . , n, and
then producing

rxnc = Hash(g1, . . . , gn, y, g 1
rx1 · · · g) and si − cxi.n = rxi

♦

Definition 3.24 (NIZKPoK of Equality of Discrete Logarithms) Let g1, g2, y1, y2 ∈ G.
s c s cA tuple (c, s) ∈ {0, 1}κ2 × ±{0, 1}Y(κ1+κ2)+1 satisfying c = Hash(g1, g2, y1, y2, g1y1, g2y) is a2

NIZKPoK proof for the equality of the discrete logarithm of y1 with respect to the base g1 and
of the discrete logarithm of y2 with respect to the base g2, denoted

NIZKPoK x : y1 = g1
x and y2 = g2

x .

This proof can be computed by choosing random rx ∈R ±{0, 1}Y(κ1+κ2) and then producing

rx rxnc = Hash(g1, g2, y1, y2, g 1 , g 2) and s = rx − cx.

♦

Definition 3.25 (NIZKPoK of a Discrete Logarithm in an Interval) Let g, y ∈ G. A
pair (c, s) ∈ {0, 1}κ2 × ±{0, 1}Y(κ1+κ2)+1 satisfying c = Hash(g, y, gs−cX yc) is a NIZKPoK proof
for the knowledge of the discrete logarithm of y with respect to the base g that lies in an interval
]X − 2Y(κ1+κ2), X + 2Y(κ1+κ2)[, denoted

xNIZKPoK x : y = g and x ∈]X − 2Y(κ1+κ2), X + 2Y(κ1+κ2)[.

This proof can be computed by choosing a random rx ∈R ±{0, 1}Y(κ1+κ2) and then producing

rx)c = Hash(g, y, g and s = rx − c(x − X).

♦

Remark 3.7.1 The above examples consider that the order of the group G is unknown, which
would be typically the case for cyclic groups in the RSA setting. If the group order is known,
i.e. prime Q of length κ, which is the case in the DL setting and if prime order bilinear groups
are deployed, then in all proofs computations on the exponents can be performed modulo Q
and using a hash function Hash : {0, 1}∗ → ZQ. In particular, random elements rx used in the
respective proofs can be chosen simply from ZQ, rather than from a larger space ±{0, 1}Y(κ1+κ2),
which will also lead to shorter proofs in comparison to those in the RSA setting.

Federal Office for Information Security 91

3. Cryptographic Foundations and Hardness Assumptions

3.7.3. Signatures of Knowledge (SoK)

The notion Signature of Knowledge (SoK) has been introduced by Camenisch [45] in the con­
text of group signatures and later formalized by Chase and Lysyanskaya [67]. SoK signatures
combine the properties of digital signatures presented in Section 3.4 and NIZKPoK proofs from
Section 3.7.2. A SoK signature σ on a message m with respect to a pair (C, w) satisfying some
relation R can be easily obtained from a ZKPoK Σ-protocol that proves the relation (C, w) ∈ R
using the Fiat-Shamir transformation [89], similarly to the construction of the corresponding
NIZKPoK proof for (C, w) ∈ R, except that now the hash function Hash : {0, 1}∗ → {0, 1}κ

takes as input m in addition to the statement C and the commitment message CMT . This
also ensures the unforgeability of SoK signatures in the Random Oracle Model. Note that
SoK signatures satisfy the NIZKPoK requirements of completeness, soundness, PoK and ZK
properties, when viewed as a NIZKPoK proof for (C, w) ∈ R. In fact, when viewed from the
perspective of (traditional) digital signatures, (C, R) can be seen as a public key and witness
w as the corresponding private key.
Similarly to ZKPoK and NIZKPoK proofs, we will use the following notation while referring

to SoK signatures on a message m with an associated NIZKPoK proof for some (C, w) ∈ R:

SoK witness w : relation R that (C, w) must satisfy message m

We implicitly assume that such SoK signature contains all information about C and R that
is necessary to check its validity. Note that concrete examples of different SoK signatures can
easily be obtained from the examples of NIZKPoK proofs in the previous section, by including
m as one of the inputs to the hash function Hash; as shown below for case of knowledge of a
discrete logarithm.

Definition 3.26 (SoK of a Discrete Logarithm) Let g, y ∈ G and m ∈ {0, 1}∗ . A pair
s c(c, s) ∈ {0, 1}κ2 × ±{0, 1}Y(κ1+κ2)+1 satisfying c = Hash(g, y, g y ,m) is a SoK signature on m

for the knowledge of the discrete logarithm of y with respect to the base g, denoted

SoK x : y = gx m .

This signature can be computed by choosing a random rx ∈R ±{0, 1}Y(κ1+κ2) and then comput­
ing

c = Hash(g, y, g rx ,m) and s = rx − cx.

♦

Federal Office for Information Security 92

4.	 Group Signatures based on General
Assumptions

In order to get intuition about the cryptographic design of group signature schemes it is ad­
visable to first consider generic solutions that build upon cryptographic primitives used in a
black-box way. Such generic constructions are usually less efficient than concrete solutions based
on number-theory since they do not necessarily admit optimizations on the algorithmic level.
Nevertheless, such generic constructions are interesting from several points of view: They shed
light on the general hardness assumptions needed to prove security of group signature schemes,
and they motivate and explain design principles of group signature schemes built from concrete
number-theoretic assumptions. In this section we first present a generic construction of a static
group signature scheme introduced by Bellare, Micciancio, and Warinschi [22]. Then, we de­
scribe its dynamic version proposed by Bellare, Shi, and Zhang [25]. These schemes apply the
so-called “sign-and-encrypt-and-prove” paradigm, also used in the construction of many
other group signature schemes.

4.1.	 The Bellare-Micciancio-Warinschi Scheme —
“Sign-and-Encrypt-and-Prove” Paradigm

In addition to the first general formal model for static group signature schemes that has also
been used to motivate our definitions in Section 2.1, Bellare, Micciancio, and Warinschi [22] gave
a suitable construction based on a digital signature scheme, a public key encryption scheme, and
non-interactive zero-knowledge proofs of knowledge. We refer to their scheme as BMW scheme.
From the historic perspective, the concept underlying the design of the BMW scheme is related
to the notion of verifiable encryption (of digital signatures) used previously by Camenisch and
Michels [60].

4.1.1. The BMW Scheme

The BMW scheme utilizes the following generic cryptographic building blocks:

•	 A digital signature scheme Σ = (Kg, Sign, Vrfy) specified in Section 3.4.

•	 A public-key encryption scheme Θ = (Kg, Enc, Dec) specified in Section 3.5.

•	 A non-interactive zero-knowledge proof of knowledge (NIZKPoK) scheme (K, P, V) speci­
fied in Section 3.7.2. The underlying NP relation R contains statement-witness pairs of the
form ((pk e, pk s, m, c), (i, pk i, certi, s)) with Vrfy(pk s, (i, pk i), certi) = 1, Vrfy(pk i, m, s) =

93

4. Group Signatures based on General Assumptions

1, and Enc(pk e, (i, pk i, certi, s)) = c, where pk e is a public key suitable for Θ, pk s is a
public key suitable for Σ, pk i is the public key of user i suitable for Σ, certi and s are
digital signatures, m is a message, and c is a ciphertext.

The NP relation underlying the NIZKPoK proof motivates at a high level the actual con­
struction of the BMW scheme. Namely, the secret signing key of a member i consists of a secret
key sk i and a digital signature certi issued by the group manager on the pair (i, pk i). That is
certi can be seen as group manager’s certificate on the member’s public key pk i. In order to
produce a group signature σ on some message m, member i encrypts (i, pk i, certi) under the
group manager’s public key pk e, computes an ordinary signature s on m using own secret key
sk i, and proves the correctness of these computations as well as the possession of a valid certi
through the NIZKPoK proof. In the following we detail the BMW construction, following the
specification from [22].

Key generation. The key generation algorithm GKg on input the security parameter 1κ ,
κ ∈ N and the number of members n ∈ N performs the following steps:

1. Compute the common reference string ρ ←R K(1κ).

2. Compute the private/public key pair (sk s, pk s) ←R Σ.Kg(1κ) for the digital signature
scheme Σ.

3. Compute the private/public key pair (sk e, pk e) ←R Θ.Kg(1κ) for the public key encryption
scheme Θ.

4. For i = 1 to n: compute (sk i, pk i) ←R Σ.Kg(1κ) and certi ←R Sign(sk s, (i, pk i)).

5. Output (gpk , gmsk , gsk) such that:

• group public key gpk = (ρ, pk s, pk e)

• group manager’s secret key gmsk = (gpk , sk e)

• member i’s secret signing key gsk [i] = (gpk , sk i, pk i, certi).

Algorithms K and Kg are assumed to use internally security parameters that are polynomially
related to the overall security parameter κ. The key generation algorithm is executed in a
trusted way. In particular, the private key sk s should be erased as it is not part of gmsk .
Alternatively, one can assume two distributed authorities, the issuer and the opener, where the
issuer would generate (sk s, pk s) and issue certificates certi, while the opener would generate
(sk e, pk e). This distributed approach is explicitly used in the dynamic version of the scheme,
which we introduce in Section 4.2. Within the static BMW scheme such issuer would be required
during the key generation procedure only.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , sk i, pk i, certi) of member i, where gpk = (ρ, pk , pk), and a message m ∈ {0, 1}∗ ,s e

and proceeds as follows:

1. Compute s ←R Sign(sk i,m) and c ←R Enc(pk e, (i, pk i, certi, s)).

Federal Office for Information Security 94

4. Group Signatures based on General Assumptions

2. Compute π as a non-interactive zero-knowledge proof of knowledge ⎡ ⎤
Vrfy(pk s, (i, pk i), certi) = 1 ⎣ ⎦NIZKPoK i, pk i, certi, s : Vrfy(pk i, m, s) = 1 .
Enc(pk e, (i, pk i, certi, s)) = c

3. Output group signature σ = (c, π).

The ciphertext c encrypts the certificate certi, the public key pk i of member i and his signature
s under the public key pk e of the group manager. Additionally, the NIZKPoK proof π proves
in zero-knowledge fashion that c encrypts these values and that, furthermore, certi is a valid
signature on (i, pk i) issued by the group manager and that member’s signature s can be indeed
verified using the encrypted public key pk i, thus implicitly meaning that s was computed by
i using the corresponding private key sk i. This is the essence of the “sign-and-encrypt-and­
prove” paradigm that is realized by many modern group signature schemes using concrete
cryptographic settings and number theory.

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (ρ, pk s, pk e), a message m, and a candidate group signature σ, and proceeds
as follows:

1. Parse σ as (c, π).

2. If π is a valid NIZKPoK proof then output 1; otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the group manager’s secret
key gmsk = (gpk , sk e), message m, and a group signature σ, and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Decrypt (i, pk i, certi, s) ← Dec(sk e, c).

3. If n < i or Vrfy(pk i, m, s) = 0 or Vrfy(pk s, (i, pk i), certi) = 0 then output 0; otherwise
output i.

The opening procedure verifies that the decrypted tuple (i, pk i, certi, s) is correctly formed.
In particular, that certi is indeed a valid certificate on (i, pk i) and that signature s is a valid
signature under pk i.

Remark 4.1.1 The BMW scheme comes without verifiability of the opening procedure. It
seems, however, possible to extend the scheme towards this property using an additional
NIZKPoK proof for the NP relation given by statement-witness pairs ((pk e, c, i, pk i, certi, s), sk e)
for which Dec(sk e, c) = (i, pk i, certi, s). In this case the opening algorithm would output, in
addition to i, a proof τ containing (pk i, certi, s, J) where J would be the mentioned NIZKPoK
proof. The judgement algorithm would then verify the validity of J , in addition to the validity
of the group signature σ, certi and s (as in the opening procedure). In fact this approach was
used by Bellare, Shi, and Zhang [25] in the context of their dynamic group signature scheme,

Federal Office for Information Security 95

4. Group Signatures based on General Assumptions

which we describe in Section 4.2. Furthermore, as mentioned by Galindo et al. [96], verifiabil­
ity of the opening procedure in group signature schemes that follow the design principle of the
BMW scheme and its dynamic variant from [25] can be obtained by using a different flavor of
public key encryption schemes that in addition to being IND-CCA secure have the property of
non-interactive opening (the so-called PKENO schemes). These schemes implicitly allow the
decrypting party, being in possession of sk e, to actually prove that some message was encrypted
in the ciphertext in a non-interactive way.

4.1.2. Security of the BMW Scheme

Bellare, Micciancio, and Warinschi [22] proved that their construction satisfies the security
notions of full anonymity and full traceability for static group signature schemes, whereby their
notion of full traceability slightly differs from our notion as explained in Remark 2.1.4. We
thus discuss the security of the BMW scheme in the light of our definitions from Section 2.1.

Anonymity. The BMW scheme satisfies the full anonymity notion from Definition 2.4 assum­
ing the IND-CCA security of the encryption scheme Θ (see Definition 3.18), the computational
ZK property of the NIZKPoK proof π, and its simulation-soundness property [165]. In partic­
ular, even if A learns all secret signing keys in gsk it cannot distinguish which signer produced
the challenge group signature σ∗ = (c ∗, π∗) due to the security of the NIZKPoK proof.

Traceability. The BMW scheme provides full traceability from Definition 2.6 assuming the
unforgeability of the digital signature scheme Σ (see Definition 3.16) and the soundness prop­
erty of the NIZKPoK scheme (K, P, V) for relation R. Observe that in order to break full
traceability the adversary would have to output a pair (m ∗, σ∗) with σ∗ = (c ∗, π∗) that would
pass the verification procedure, yet result in the opening algorithm outputting 0. The sound­
ness property behind the NIZKPoK proof π∗ implies that c ∗ encrypts (i, pk i, certi, s) where certi
is a valid certificate on (i, pk i) and s is a valid signature on m that can be verified using pk i.
Hence, in order to break traceability the adversary would have to either break the soundness
property regarding π∗ or to come up with a forged certificate certi that has never been issued
by the group manager.

Non-frameability. The BMW scheme guarantees the full non-frameability notion from Def­
inition 2.8 under the sole assumption that the digital signature scheme Σ is unforgeable. In
order to break the full non-frameability property the adversary that now knows gmsk would
have to output a pair (m ∗, σ∗) with σ∗ = (c ∗, π∗) that would pass the verification procedure
and result in the opening algorithm outputting some identity i∗ ∈ [1, n], yet without knowing
gsk [i∗] and without having previously obtained a group signature on m ∗ through the signing
oracle. The knowledge of gmsk allows the adversary to reveal certi∗ , i∗ ∈ [1, n] from any valid
group signature of i∗ . On the other hand, gmsk does not include sk s, thus preventing the
adversary from issuing rogue certificates certi∗ on public keys of its own choice. The only se­
cret information that remains hidden from the adversary is the corresponding private key sk i∗ .
Therefore, in order to break full non-frameability the adversary would have to come up with a
forgery for the signature s on behalf of i∗ .

Federal Office for Information Security 96

4. Group Signatures based on General Assumptions

Remark 4.1.2 The entire security of the BMW scheme can be reduced to the sole assumption
that trapdoor permutations exist. The reason is that this assumption is the minimal assump­
tion, which is necessary to show existence of an IND-CCA secure public key encryption scheme
Θ. Moreover, this assumption suffices to prove existence of simulation-sound NIZKPoK proofs
for arbitrary NP relations. The existence of an unforgeable digital signature scheme Σ can,
however, be shown based on a weaker assumption, namely the existence of one-way functions
[163]. A natural question in this context is, whether assuming existence of trapdoor permuta­
tions is necessary for a static group signature scheme to be fully anonymous, fully traceable,
and fully non-frameable? In the follow-up work Abdalla and Warinschi [2] were able to prove
that existence of such group signature schemes implies existence of IND-CCA secure public
key encryption. Hence, it is unlikely that one can construct a group signature scheme with the
above mentioned security properties, assuming solely the existence of one-way functions. This
makes group signature schemes more complex primitives than e.g. ordinary signature schemes.

4.2. The Bellare-Shi-Zhang Scheme

Bellare, Shi, and Zhang [25] gave a generic construction of a dynamic group signature scheme
that also provides verifiable opening procedure and splits the role of the group manager into
two distributed authorities — the issuer and the opener. Furthermore, their scheme, which we
refer to as BSZ, involves user PKI for potential group members. In the following we describe
algorithms and protocols of the BSZ scheme and discuss its security.

4.2.1. The BSZ Scheme

The BSZ scheme uses the same cryptographic building blocks as the static BMW scheme,
namely an unforgeable digital signature scheme Σ = (Kg, Sign, Vrfy), a public key encryp­
tion scheme Θ = (Kg, Enc, Dec), and two non-interactive zero-knowledge proof of knowledge
(NIZKPoK) schemes: (1) (K1, P1, V1) for the NP relation R1 containing statement-witness
pairs of the form ((pk e, pk s, m, c), (i, pk i, certi, s)) identical to those used in the BMW scheme,
and (2) (K2, P2, V2) for the NP relation R2 containing statement-witness pairs of the form
((pk e, c, i, pk i, certi, s), sk e) for which Dec(sk e, c) = (i, pk i, certi, s) as described in Remark 4.1.1.
We now proceed with the specification of algorithms and protocols of the BSZ scheme.

Key generation. The key generation algorithm GKg on input the security parameter 1κ ,
κ ∈ N proceeds as follows:

1. Compute common reference strings ρ1 ←R K1(1
κ) and ρ2 ←R K2(1

κ).

2. Compute the private/public key pair (sk s, pk s) ←R Σ.Kg(1κ) for the digital signature
scheme Σ.

3. Compute the private/public key pair (sk e, pk e) ←R Θ.Kg(1κ) for the public key encryption
scheme Θ.

4. Output (gpk , ik , ok , reg) such that:

Federal Office for Information Security 97

4. Group Signatures based on General Assumptions

• group public key gpk = (ρ1, ρ2, pk s, pk e)

• secret issuing key ik = (gpk , sk s)

• secret opening key ok = (gpk , sk e)

• initially empty registration list reg .

User key generation. The user key generation algorithm UKg on input the security parameter
1κ , κ ∈ N computes and returns the private/public key pair (usk [i], upk [i]) ←R Σ.Kg(1κ) for
the digital signature scheme Σ.
As noticed in Section 2.3.2 user PKI is modeled here through public (read) access to the list

of registered public keys upk .

Join protocol. The join protocol Join is executed between the issuer with input ik = (gpk , sk s)
and a prospective member i with input gpk = (ρ1, ρ2, pk s, pk e) and own PKI-certified key pair
(usk [i], upk [i]). It proceeds as follows:

1. Member i generates (sk i, pk i) ←R Σ.Kg(1κ) and computes sigi ←R Sign(usk [i], (i, pk i)).

Member i sends (pk i, sigi) to the issuer.

2. The issuer proceeds if Vrfy(upk [i], (i, pk i), sigi) = 1. The issuer sends certi ←R Sign(sk s, (i, pk i))
back to i and stores reg [i] = (i, pk i, sigi).

3. Member i checks whether Vrfy(pk s, (i, pk i), certi) = 1 and if so stores gsk [i] = (gpk , sk i, pk i, certi)
as its secret signing key.

The joining procedure should be executed over a secure channel in order to protect the
transmission of (pk i, sigi) and certi. Furthermore, it is implicitly assumed PKI-certified public
keys upk [i] of joining members are known to the issuer, who is also supposed to check their
validity. In fact, user PKI can also be helpful for the establishment of the required secure
channel. Note also that the registration information reg [i] contains sigi which can be verified
using PKI-certified upk [i] and can thus be used later by the opener, who has read access to
reg .

Signature generation. The signing algorithm GSign of the BSZ scheme proceeds identically
to the signing algorithm of the BMW scheme from Section 4.1. The resulting group signature
on a message m generated by the signer i is thus σ = (c, π) where c, being a ciphertext under
pk e, is part of the statement for the NP relation R1, which encrypts the witness (i, pk i, certi, s),
and π is the corresponding NIZKPoK proof.

Signature verification. The signature verification algorithm GVrfy of the BSZ scheme is also
identical to the verification algorithm of the BMW scheme from Section 4.1. The verification of
σ = (c, π) on a message m boils down to the verification of the corresponding NIZKPoK proof
π.

Opening procedure. The opening algorithm Open takes as input the secret opening key
ok = (gpk , sk e), message m, group signature σ, and the registration list reg , and proceeds as
follows:

Federal Office for Information Security 98

4. Group Signatures based on General Assumptions

1. If GVrfy(gpk , m, σ) = 0 then output (0, ⊥).

2. Decrypt (i, pk i, certi, s) ← Dec(sk e, c).

3. If n < i or Vrfy(pk i, m, s) = 0 or Vrfy(pk s, (i, pk i), certi) = 0 then output (0, ⊥).

4. Find i such that reg [i] = (i, pk i, sigi).

5. Compute J as NIZKPoK sk e : Dec(sk e, c) = (i, pk i, certi, s) .

6. Output (i, τ) where τ = (pk i, certi, s, J, sigi).

The opening procedure of the BSZ scheme is similar to that of the BMW scheme from Section
4.1, except that in addition to the identity i of the signer it outputs proof τ that includes the
decrypted tuple (i, pk i, certi, s) together with the NIZKPoK proof J testifying that decryption
was performed correctly and signature sigi that links the signer i to the PKI-certified public
key upk [i].

Judgement procedure. The judgement algorithm Judge takes as input the group public key
gpk = (ρ1, ρ2, pk s, pk e), message m, group signature σ, identity i, and proof τ , and proceeds as
follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse τ as (pk i, certi, s, J, sigi).

3. If all of the following holds then output 1; otherwise output 0:

• J is a valid NIZKPoK proof

• Retrieve upk [i]
• Vrfy(upk [i], (i, pk i), sigi) = 1

The judgement procedure first ensures the validity of the group signature, which implicitly
provides assurance for the validity of the encrypted tuple (i, pk i, certi, s). Through the addi­
tional verification of the NIZKPoK proof J it obtains confidence that decryption was performed
correctly. The actual identification of the signer i is then verified using the signer’s PKI-certified
public key upk [i] and the signature sigi. It is implicitly assumed that identity i points to the
candidate public key upk [i] used in this final verification step.

4.2.2. Security of the BSZ Scheme

Bellare, Shi, and Zhang [25] were able to prove that security of their scheme relies on the exis­
tence of trapdoor permutations (which also underlies the security of the static BMW scheme).
Towards this statement they analyzed anonymity, traceability, and non-frameability of the
scheme using definitions that in part correspond to our definitions for DA-schemes with verifi­
able opening and user PKI from Section 2.4.

Federal Office for Information Security 99

4. Group Signatures based on General Assumptions

Anonymity. The BSZ scheme satisfies the full anonymity notion for DA-schemes (with veri­
fiable opening) from Definition 2.25 assuming the IND-CCA security of the encryption scheme
Θ (see Definition 3.18), the ZK property of the NIZKPoK proof (K1, P1, V1) for relation R1,
and its simulation-soundness property [165]. In particular, even if A corrupts all members of
the group, obtaining all secret signing keys in gsk and all PKI-certified secret keys in usk , it
cannot distinguish which signer produced the challenge group signature σ∗ = (c ∗, π∗) due to
the security of the corresponding NIZKPoK proof.

Traceability. The BSZ scheme being dynamic cannot provide full traceability. However, it
can be shown that BSZ scheme satisfies the weaker notion of insider traceability from Definition
2.26 assuming the unforgeability of the digital signature scheme Σ (see Definition 3.16) and
the soundness property of the NIZKPoK scheme (K1, P1, V1) for relation R1. Observe that in
order to break insider traceability the adversary would have to output a pair (m ∗, σ∗) with σ∗ =
(c ∗, π∗) that would pass the verification procedure, yet result either in the opening algorithm
outputting (0, ⊥) or in the judgement algorithm outputting 0. The soundness property of
the NIZKPoK proof behind π∗ implies that c ∗ encrypts (i, pk i, certi, s) where certi is a valid
certificate on (i, pk i) and s is a valid signature on m that can be verified using pk i. Hence, in
order for the opening algorithm to output (0, ⊥) the adversary would have to either break the
soundness property regarding π∗ or to come up with a forged certificate certi that has never
been issued by the issuer. Since the judgement algorithm verifies the validity of the group
signature it will accept the corresponding proof τ ∗ output by the opening algorithm.

Non-frameability. The BSZ scheme guarantees the full non-frameability notion for DA­
schemes (with verifiable opening) from Definition 2.28 under the assumption that the digital
signature scheme Σ is unforgeable and the NIZKPoK scheme (K2, P2, V2) for relation R2 is
sound. In order to break the full non-frameability property the adversary that now knows ik
and ok would have to output (m ∗, σ∗, i∗, τ ∗) with σ∗ = (c ∗, π∗) that would pass the verification
procedure and (i∗, τ ∗) that would pass the judgement procedure, yet without knowing gsk [i∗]
and usk [i∗] and without having previously obtained a group signature on m ∗ through the signing
oracle of i∗ . Note that τ ∗ contains sigi∗ and J∗ that are verified by the judgement algorithm.
The knowledge of ik allows the adversary to create rogue certificates certi∗ on public keys pk i∗

of its own choice. Hence, in order to break full non-frameability the adversary would have to
either forge signature sigi∗ under upk [i∗] or break the soundness property regarding J∗ .

Federal Office for Information Security 100

5.	 Group Signatures in the RSA
Setting

Many group signature schemes were constructed using the RSA setting. Earlier schemes, in­
cluding RSA-based constructions proposed in the seminal work of Chaum and van Heyst [71]
suffered in particular from long sizes of group public keys and signatures, and could only
partially satisfy the security requirements, which group signatures are expected to fulfill today.
The first (dynamic) group signature scheme in the RSA setting with constant key and signature
lengths was introduced by Camenisch and Stadler [61] and more efficient constructions were
proposed soon thereafter by Ateniese and Tsudik [16] for dynamic groups and by Camenisch
and Michels [58] for static groups with verifiable opening procedure. The first group signature
scheme in the RSA setting that was also provably secure against coalitions of signers (with the
group manager) was constructed by Ateniese, Camenisch, Joye, and Tsudik [11]. None of these
schemes considered revocation and so several extensions were proposed later to deal with this
problem. For example, Bresson and Stern [42] showed how to modify the scheme from [61] in
order to revoke signing rights without sacrificing anonymity. Ateniese, Song, and Tsudik [15]
proposed revocation solution for [11] that, however, required zero-knowledge proofs for special
type of relations that cannot be realized efficiently. A better revocation approach for the scheme
from [11] was proposed by Camenisch and Lysyanskaya [56] based on dynamic accumulators.
This revocation mechanism has been then modified by Tsudik and Xu [178], who also proposed
another group signature scheme for dynamic schemes with better efficiency regarding the ad­
mission procedure. Nakanishi and Sugiyama [149], based on previous two approaches, designed
a group signature scheme for dynamic groups with distributed authorities and reduced costs
for the public membership information and computations of the group manager. This scheme
has been further improved by Nakanishi et al. [148] towards more efficient update of secret
signing key performed by the (unrevoked) group members, yet with higher amount of work
for the group manager. Camenisch and Groth [49] came up with several efficient schemes in
the RSA setting for static and dynamic groups that can also handle revocation. Kiayias and
Yung [119, 121] proposed another dynamic group signature scheme, using some ideas from [11],
which they however analyzed in a formal model similar to [22, 25] and for which they could
prove anonymity against malicious group managers. They also gave intuition on how to adopt
the scheme to the setting of distributed authorities.
In the following we give a detailed overview of several group signature schemes in the RSA

setting. We start with the Ateniese-Camenisch-Joye-Tsudik (ACJT) scheme [11], for which we
also describe the revocation mechanism based on dynamic accumulators from [56]. We then
focus on the revocable dynamic group signature scheme by Tsudik and Xu [178] and on the
schemes by Camenisch and Groth [49]. The last group signature in the RSA setting which we
address is by Kiayias and Yung [119, 121].

101

5. Group Signatures in the RSA Setting

5.1. The Ateniese-Camenisch-Joye-Tsudik Scheme

In this section we present the group signature scheme proposed by Ateniese, Camenisch, Joye,
and Tsudik [11]. This scheme, which we refer to as ACJT, is dynamic and offers verifiable
opening. According to our classification it thus belongs to group signature schemes that we
defined in Section 2.3. Historically, the ACJT scheme can be seen as evolution of several
previous proposals by Camenisch and Stadler [61] (some weaknesses of their scheme were later
identified in [17]), Camenisch and Michels [58], and Ateniese and Tsudik [16]. The main
advantage of the ACJT scheme was that it was the first practical scheme to generate constant­
length group signatures and public group keys, while also offering coalition-resistance property,
which is subsumed by our definitions of traceability and non-frameability.

5.1.1. The ACJT Scheme

The ACJT group signature scheme is dynamic and offers verifiable opening. It uses RSA setting
and has several security parameters, described in the following: Let c > 1 and c, p ∈ N, where
p determines the size of the modulus N and c denotes the output length of the used hash
function. Let λ1, λ2, γ1, γ2 denote lengths and Λ, Γ denote two integral ranges satisfying the
following conditions:

• λ1 > c(λ2 + c) + 2 and λ2 > 4 p

• Λ =]2λ1−λ2 , 2λ1+λ2 [

• γ1 > c(γ2 + c) + 2 and γ2 > λ1 + 2

• Γ =]2γ1−γ2 , 2γ1+γ2 [

The two values λ1, λ2 stretch the integral range Λ for the members secret xi. The same shall
apply for γ1, γ2, stretching Γ for the random prime values ei. Thus the values λ1, λ2, γ1, γ2

determine the hardness of the underlying strong RSA assumption.

In the following we specify the core algorithms and protocols of the ACJT scheme. Our
description follows the specification from [11], except that we also provide specification of the
judgement procedure that has been omitted in the original work.

Key generation. The key generation algorithm GKg on input p performs the following steps:

1. Compute safe RSA modulus N as a product of two safe primes p = 2p ' +1 and q = 2q ' +1,
where p ' and q ' are primes of length p.

2. Choose random elements a, a0, g, h ∈R QR(N) (of order p ' q ').

x3. Pick random x ∈R Z∗
p ql , compute y = g mod N .l

4. Output (gpk , gmsk , reg) such that:

• group public key gpk = (N, a, a0, y, g, h)

Federal Office for Information Security 102

5. Group Signatures in the RSA Setting

• group manager’s secret key gmsk = (gpk , p ' , q ' , x)

• registration list reg is empty.

It is assumed that key generation is performed in a trusted way. In particular, this means
that the RSA modulus N is indeed safe and that elements a, a0, g, h are chosen independently
at random from QR(N). This assumption is necessary to ensure trust into the group public
key gpk . In case that this trust is unavailable the correct generation of gpk can be ensured
through costly NIZKPoK proofs proposed by Camenisch and Michels in [59].

Join protocol. The join protocol Join is executed between the group manager GM with
input gmsk = (gpk , p ' , q ' , x) and a prospective member i with input gpk = (N, a, a0, y, g, h). It
proceeds as follows:

x̃i hr̃i1. Member i picks random x̃i ∈R]0, 2λ2 [and r̃ ∈R]0, N2[, computes C1 = g mod N , and
sends C1 to GM together with a proof

x̃i hr̃iZKPoK x̃i, r̃i : C1 = g mod N .

2. GM proceeds if C1 ∈ QR(N) and the above proof was correct. GM picks random αi, βi ∈R

]0, 2λ2 [and sends (αi, βi) back to i.

xi3. Member i computes xi = 2λ1 +(αix̃i + βi mod 2λ2), and sends C2 = a mod N to GM
together with a proof ⎡ ⎤

C2 = axi and xi ∈ Λ
uZKPoK ⎣ xi, u, v, w : a = C2/a

2λ1 and u ∈] − 2λ2 , 2λ2 [⎦ .
Cαi βi 2λ2

1 g = gu(g)vhw

4. GM proceeds if C2 ∈ QR(N) and the above proof was correct. GM picks random prime
ei ∈R Γ and computes Ai = (C2a0)

1/ei mod N , sets reg [i] = (Ai, ei, transi) where transi
is the communication transcript, and sends (Ai, ei) back to i.

5. Member i checks whether axi a0 = Ae
i
i mod N and if so stores gsk [i] = (gpk , xi, Ai, ei) as

its secret signing key.

The above join protocol should be performed over a secure channel in order to prevent leakage
of the pair (Ai, ei) which is sent in clear to member i. Moreover, communication transcripts
transi that the group manager stores in reg are assumed to be authenticated by i in a way
that any publication of transi uniquely identifies i who participated in the join protocol. These
assumptions can be realized using PKI in which candidate members have certified private/public
key pairs. That is i can sign the transcript using those keys.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , xi, Ai, ei) of member i, where gpk = (N, a, a0, y, g, h), and a message m ∈ {0, 1}∗ ,
and proceeds as follows:

Federal Office for Information Security 103

5. Group Signatures in the RSA Setting

1. Pick random w ∈R {0, 1}2Yp and compute

ei hwT1 = Aiy w mod N, T2 = g w mod N, T3 = g mod N.

2. Compute S as a signature of knowledge � � �γ � �γ �
1 1 1 δa0 = T α
β

and 1 = T α and T2 = g1 a y 2 gSoK α, β, γ, δ, ε : m .
αhεT3 = g and α ∈ Λ and β ∈ Γ

3. Output group signature σ = (S, T1, T2, T3).

In the above signature generation algorithm (T1, T2) is ElGamal encryption [88] of Ai under the
public key y in the QR(N) group. The additional value T3 is a Pedersen commitment [159] to
the exponent ei. The SoK signature thus proves that the signer is in possession of a pair (Ai, ei)

xi a0)
1/eisuch that Ai = (a mod N ; thus, proving that the signer has a valid signing key gsk [i]

and that σ can be opened by the group manager, who can decrypt Ai from the ciphertext.

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (N, a, a0, y, g, h), a message m, and a candidate group signature σ, and
proceeds as follows:

1. Parse σ as (S, T1, T2, T3).

2. If S is a valid SoK signature on message m then output 1; otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the group manager’s se­
cret key gmsk = (gpk , p ' , q ' , x), message m, group signature σ, and registration list reg =
{(Ai, ei, transi)i∈[1,n]}, and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Compute Ai =
T
T1
x mod N .
2

3. Find i for which reg [i] = (Ai, ei, transi).

x T14. Compute J as NIZKPoK x : y = g and
Ai

= T2
x .

5. Output (i, τ), where τ = (J, transi).

Note that opening proof τ contains the NIZKPoK of the group manager that the group
signature’s components T1 and T2 encrypt value Ai, which is part of the disclosed communication
transcript transi.

Judgement procedure. The judgement algorithm Judge takes as input the group public
key gpk = (N, a, a0, y, g, h), message m, signature σ, identity i, and proof τ , and proceeds as
follows:

Federal Office for Information Security 104

5. Group Signatures in the RSA Setting

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse τ as (Ai, J).

3. If all of the following holds then output 1; otherwise output 0:

• J is a valid NIZKPoK proof

• Ai is included in transi

• transi is authenticated by i.

The validity of the NIZKPoK proof J ensures that the group manager correctly decrypted the
claimed value Ai from the ElGamal ciphertext (T1, T2). The actual proof that Ai identifies i as
a signer of σ stems from the assumption on the join protocol that transcripts transi (containing
Ai) have been authenticated by i.

5.1.2. Security of the ACJT Scheme

At time when ACJT scheme appeared, formal security models for group signatures were not
yet established. The original security proofs for the ACJT scheme, therefore, focused on several
building blocks of the scheme and proved separate requirements of unforgeability, anonymity,
unlinkability, exculpability, and coalition-resistance. In particular, Ateniese et al. [11] proved
that secret signing keys gsk [i] are unforgeable under the Strong RSA assumption, even if the
adversary can admit new members and learn their secret signing keys by interacting with the
group manager. They also proved that the interactive protocol underlying the SoK signature
S is a statistical honest-verifier ZKPoK protocol.
In the following we intuitively discuss security of the ACJT scheme in the light of our defi­

nitions for anonymity, traceability, and non-frameability from Sections 2.2 and 2.3.

Anonymity. The ACJT scheme seems to satisfy the full anonymity notion from Definition 2.12
in the Random Oracle Model under the DDH assumption in QR(N) groups (see Definition 3.4).
The knowledge of secret signing keys gsk [i] of all group members does not help the adversary
A in distinguishing, whether the challenge signature σ∗ = (S∗, T 1

∗, T 2
∗, T 3

∗) has been produced
by signer i0 or signer i1, since the corresponding SoK signature has statistical ZK property,
i.e., it does not reveal any information about gsk [ib], and even if gsk [i0] and gsk [i1] are known
to A (which full anonymity implicitly assumes), distinguishing whether these values have been
used to compute T1

∗ , T2
∗, and T3

∗ is hard under the DDH assumption in QR(N) groups.

Traceability. The ACJT scheme is dynamic and cannot satisfy full traceability as mentioned
in Section 2.2.4. The ACJT scheme does, however, seems to offer insider traceability from
Definition 2.18. Since the group manager remains honest and the join protocol assumes that
each joining member i authenticates the transcript transi, the adversary A has to come up

∗ ∗ ∗with the group signature σ∗ = (S∗, T ∗, T , T) on some message m such that σ∗ is valid but 1 2 3

the algorithm Open outputs either an identity i∗ = 0 or a pair (i∗, τ ∗), which is then rejected by
the algorithm Judge. The soundness property of the SoK signature S∗ ensures that if σ∗ is valid
then its components T1

∗ and T2
∗ encrypt Ai∗ and T ∗ is a commitment to ei∗ satisfying the relation

Federal Office for Information Security 105

5. Group Signatures in the RSA Setting

a0)
1/ei∗Ai∗ = (axi∗ mod N for some xi∗ known to the signer. Since forging (xi∗ , Ai∗ , ei∗) is

computationally infeasible under the Strong RSA assumption (see Definition 3.3) and for each
secret signing key issued by the group manager there is a corresponding transcript stored in
the reg list, the probability that Open outputs i∗ = 0 is negligible. The probability that Judge
algorithm rejects the output pair (i∗, τ ∗) is negligible since the NIZKPoK proof J is assumed
to be sound and the presented transcript transi∗ is assumed to uniquely identify i∗ .

Non-Frameability. The ACJT scheme seems to satisfy the notion of full non-frameability
from Definition 2.21. The reason is that Judge algorithm first ensures that (m ∗, σ∗) can be
successfully verified. The PoK property of the SoK signature S∗ (which is part of σ∗) implies
that σ∗ has been produced with knowledge of (xi∗ , Ai∗ , ei∗). Although the adversary A may
learn (Ai∗ , ei∗) by acting as the group manager in the join protocol, it is hard for A to actually
obtain xi∗ due to the hardness of the DL problem in either Zp

∗ or Zq ∗ (recall that A knows
factors of N) and the ZK property of the ZKPoK protocol executed in Step 3 of Join and of
the SoK signatures. A could still generate (m ∗, σ∗) on behalf of some corrupted group member
and attempt to provide a proof τ ∗ = (transi∗ , J) that this pair opens to some honest member
i∗ . This is, however, prevented by the soundness property of the NIZKPoK proof J and the
assumption that each transcript uniquely identifies the corresponding member.

5.2.	 The Camenisch-Lysyanskaya Revocation
Mechanism for the ACJT Scheme

The original ACJT scheme does not support revocation of group members. There exist several
proposals for adding this useful property to the ACJT scheme and its predecessors. For example,
Bresson and Stern [42] extended the signing procedure of the Camenisch-Stadler group signature
scheme from [61] towards a zero-knowledge proof for proving that the identity of the signer does
not appear in the public list of revoked identities. Unfortunately, this technique results in the
linear growth of the length of group signatures with the number of revoked signers. Ateniese,
Song, and Tsudik [15] introduced three revocation mechanisms for the ACJT scheme. Two of
these mechanisms require the group manager to change the group public key gpk and re-issue
new pairs (Ai, ei), which are part of the secret signing key gsk [i] to all remaining group members
i, whereby their first approach assumes that the group manager re-computes all these pairs and
communicates them to the remaining group members i by means of some secure broadcast
channel, while the second approach off-loads the computation of the updated (Ai, ei) pair to
member i at the cost that the opening procedure requires linear number of public-key operations
in the number of remaining group members to identify the signer. Their third mechanism is
based on the certificate revocation lists and keeps the signature length and the amount of work
for the signers constant, yet it employs special zero-knowledge proofs for proving knowledge of
double discrete logarithms [61], which are known to be very inefficient.
In this section we focus on the far more efficient extension of the ACJT scheme towards

the revocation property proposed by Camenisch and Lysyanskaya [56]. Their extension uses
dynamic accumulators. The notion of accumulators has been introduced by Benaloh and de

Federal Office for Information Security 106

5. Group Signatures in the RSA Setting

Mare [26], and later studied by Barić and Pfitzmann [20]. Accumulators can combine a set of
elements into a short value while also offering short witnesses for each combined (accumulated)
value. The main security requirement on such accumulators is that it should be infeasible to
find a witness for some value that was not accumulated. Camenisch and Lysyanskaya [56]
introduced dynamic accumulators for the accumulation of prime numbers, and showed, how
these can be used to revoke members in the ACJT scheme where prime numbers appear as part
of the secret signing keys. In the following we provide definitions for dynamic accumulators
and present the modified version of the ACJT scheme that can handle membership revocation
more efficiently then earlier approaches.

5.2.1. Dynamic Accumulators and Group Management

Dynamic accumulators offer efficient operations for addition and deletion of accumulated el­
ements and corresponding update of witnesses. In Definition 5.1 we specify main algorithms
behind dynamic accumulators that allow for public addition of new elements but make the
deletion process dependent on some private key. Another important property is that after the
removal of some elements from the accumulator, the update of witnesses for remaining elements
can be done publicly.

Definition 5.1 (Dynamic Accumulator) A dynamic accumulator (AccGen, AccAdd, AccDel,
AccUpdW, AccVrfy) consists of the following five PPT algorithms:

Key generation. The randomized key generation algorithm AccGen takes as input a security
parameter 1κ , κ ∈ N and outputs a private/public key pair (sk , pk), and an empty
accumulator accX , with X = ∅, where X ⊂ X denotes the set of accumulated elements.
It is assumed that AccGen determines the space of elements X .

Add elements. The add algorithm AccAdd takes as input the public key pk , an element x, an
accumulator accX , where x ∈ X \ X, and outputs an updated accumulator accX∪{x} and
a witness wx for x.

Delete elements. The delete algorithm AccDel takes as input the secret key sk , element x,
and an accumulator accX , where x ∈ X, and outputs an updated accumulator accX\{x}.

Update witness. The witness update algorithm AccUpdW takes as input a witness wx, an
element x, an accumulator accX , where wx is a witness for x ∈ X, an element y = x,
a label l ∈ {add, del}, and an updated accumulator accY , where Y is either X \ {y} or
X ∪ {y}, and outputs an updated witness wx for x ∈ Y .

Verification. The deterministic verification algorithm AccVrfy takes as input the public key
pk , a candidate witness w , an element x, and an accumulator accX and outputs either 1
(to indicate that w is a valid witness for x ∈ X) or 0.

In order to be usable for the purpose of membership revocation dynamic accumulators should
be quasi-commutative, in the sense that for a given correctly computed accumulator accX , and
elements x1, x2 ∈ X \ X the following should hold:

AccAdd(pk , x2, (AccAdd(pk , x1, accX)) = AccAdd(pk , x1, (AccAdd(pk , x2, accX)).

Federal Office for Information Security 107

5. Group Signatures in the RSA Setting

Furthermore, for any PPT adversary A the probability that A given the public key pk and
access to the delete oracle AccDel(sk , ·, ·) outputs a tuple (w ∗ , x ∗, X∗) such that x ∗ ∈ X∗ but
AccVrfy(pk , w ∗ , x ∗ , accX∗) = 1, where accX∗ is the accumulator obtained by accumulating the
elements of X∗ using the AccAdd algorithms, is negligible in κ.

A dynamic accumulator (AccGen, AccAdd, AccDel, AccUpdW, AccVrfy) can be used to imple­
ment membership revocation in a dynamic group signature scheme. Roughly, the management
of the accumulator is performed by the group manager, who extends its group public key gpk
with the public key pk for the accumulator and an accumulator value acc∅. Recall from Section
2.2 that group signature schemes with membership revocation maintain an additional update
information upd , which is assumed to be public. Upon the admission of a new group member
i the group manager updates the accumulator accX with a fresh value xi ∈ X and provides
member i with the corresponding witness wxi . Additionally, it updates upd with an entry
(xi, add), where add is a label indicating that xi belongs to a recently admitted member. Sim­
ilarly, if some member i is revoked then the corresponding entry (xi, add) in upd is replaced
with (xi, del). It is assumed that upd implicitly allows parties to recognize all recent updates.
In both cases unrevoked group members can use information from upd to directly update their
witnesses wxi . The described procedure ensures that only current group members i are in pos­
session of witnesses wxi for corresponding elements xi that are accumulated into the current
accumulator accX , which is part of the group public key. Security of the accumulator ensures
that it is computationally hard to come up with an acceptable pair (wxi , xi) for some accX

in gpk if xi ∈ X. Before using this approach for membership revocation in group signature
schemes there are two further problems that should be solved first.

The first problem is that elements xi of admitted group members are made public through
the update information upd and thus linkable to a particular group member i. Hence, in order
to preserve anonymity the signer should somehow be able to prove that he possesses a witness
wxi for some element xi in the accumulator accX without pointing out, which element this is.
One solution to this problem is that the signer commits to xi using some commitment scheme
Commit from Definition 3.19 and the dynamic accumulator offers support for a ZKPoK proof
of the form:

ZKPoK wxi , xi, r : C = Commit(xi, r) and AccVrfy(pk, wxi , xi, accX) = 1 .

The existence of efficient ZKPoK proofs of this form surely depends on the actual construction
of the accumulator.

The second problems is more subtle: Security of the accumulator says nothing about the
secrecy of witnesses. It is thus possible that some revoked member i∗ obtains a valid pair
(wxi , xi) for some unrevoked member i and performs the above ZKPoK proof. Therefore,
witnesses and/or elements used in the accumulator should somehow be bound to the secret
signing keys of members. In particular, it should not be possible to use gsk [i∗] together with a
pair (wi, xi) unless i∗ = i. Again, whether an accumulator can be bound to the group signature
scheme depends on their actual instantiations.

Federal Office for Information Security 108

5. Group Signatures in the RSA Setting

5.2.2.	 The Camenisch-Lysyanskaya Accumulator for Prime
Numbers

The dynamic accumulator introduced by Camenisch and Lysyanskaya [56] has been designed
to accumulate prime numbers. Its construction is given by the following algorithms:

Key generation. The algorithm AccGen takes as input 1κ , κ ∈ N, runs RSAGen(1κ) to obtain
a safe RSA modulus N = pq of length κ, where p = 2p ' + 1 and q = 2q ' + 1 with p ' , q ' , p, q being
primes. The algorithm also chooses a generator g of the group QR(N). The space of elements
is set to 	

X = ei | ei is prime and ei = p ' , q ' and 2 ≤ A ≤ ei ≤ B < A2 ,

where A and B depend polynomially on κ. The algorithm outputs public key pk = (N, A, B),
secret key sk = (p, q), and the initial accumulator acc = g.

Add element. The algorithm AccAdd takes as input (pk , e, acc), and outputs witness w = acc
and updated accumulator acce mod N . Note that the previous accumulator is returned as a
witness for the added element.

Delete	 element. The algorithm AccDel takes as input (sk , e, acc), and outputs updated
e−1 mod (p−1)(q−1)accumulator acc mod N . Note that knowledge of factors p and q of N helps

to invert e.

Update witness. The algorithm AccUpdW takes as input (w , e, acc, ̃ acc). If l = add thene, l, a
the algorithm outputs updated witness w ẽ mod N . If l = del then the algorithm computes
integers a and b such that ae + bẽ = 1 and outputs updated witness w b · a a .acc Note that a, b
should be computed through the extended Euclidean algorithm (see, e.g. [171]). The existence
of such values is guaranteed since e, ẽ ∈ X are co-prime.

Verification. The algorithm AccVrfy takes as input (pk , w , e, acc), and outputs 1 if w e =
acc (mod N); otherwise the algorithm outputs 0.

This accumulator construction ensures that addition of primes e1, . . . , en results in the accu­
mulator acc = g i ei ∈ QR(N). It is easy to see that if multiple elements should be accumulated
by a party which knows sk , then this can be done more efficiently by first computing their prod­
uct modulo (p − 1)(q − 1) and then raising the current accumulator acc to the power of that
product. Similar efficiency improvement is possible for batch-wise deletion of accumulated el­
ements. The security of this accumulator has been proven under the Strong RSA assumption
(Definition 3.3) in [56].
Another property of this accumulator, which becomes necessary for handling the revocation

in the ACJT scheme is the existence of an efficient ZKPoK proof for proving knowledge of (w , e)
satisfying the verification equation w e = acc mod N for some given accumulator acc when e

ehris additionally committed to in Ce = g (Pedersen commitment in some suitable group G of
prime order q; we use Fraktur letters here to indicate that the setting of commitments differs

Federal Office for Information Security 109

 � �
 � �

5. Group Signatures in the RSA Setting

from that of the accumulator). Highly simplified, the public key pk of the accumulator is
extended with two further randomly chosen elements g, h ∈ QR(N). The prover in possession
of (w , e) for accumulator acc and Ce = gehr first picks random r1, r2, r3 ∈ ZlN/4J, computes

ehr1 r2 hr3Ce = g , Cacc = whr2 , and Cr = g , and sends (Ce, Ce, Cacc, Cr) to the verifier that
already knows acc. Then, prover and verifier execute the following ZKPoK protocol (for those
details we refer to [56]): ⎡
 ⎤
γ

αhβ Ce hδ= g and g =Ce g⎢⎢⎣

⎥⎥⎦
)εhζ and Ce = gαhϕ and Cr = gψhηZKPoK
 α, β, γ, δ, ε, ζ, ϕ, ψ, η, ς, ξ : g = (gCe .

ς
1 1 1 acc = Cα ς

and 1 = Cα ξ
acc h r g h

5.2.3. The ACJT Scheme with Membership Revocation

In the following we discuss how the Strong-RSA based dynamic accumulator from the previous
section can support revocation when deployed in the original ACJT scheme. The key generation
of the original ACJT scheme should be extended with the public parameters of the accumulator.
In order to avoid confusion with parameters belonging to the original scheme and parameters
belonging to the accumulator we will use Fraktur letters N, p, q, g, and h to indicate those
parameters that belong to the accumulator construction. The actual binding between the
accumulator and then ACJT scheme is performed by using primes ei of the ACJT scheme as
elements that will be accumulated in acc.

Key generation. The key generation algorithm GKg runs additionally AccGen(1κ) and adds
public values (N, acc∅, g, h) to the group public key gpk . It then extends gmsk with primes p, q
(factors of the accumulator’s RSA modulus N). Finally, it publishes the initially empty update
information upd .

Join protocol. In the protocol Join, the group manager sends (Ai, ei, acc i) with acc i = acc
to i in the fourth protocol step. Using the prime ei (from the ACJT member’s certificate)
the group manager updates the accumulator acc in gpk to accei mod N. Finally, the group
manager adds an entry (ei, add) to upd . At the end of the protocol i runs AccVrfy to check
whether acci is a valid witness for ei for the updated accumulator. (Note that accumulator
acc that was valid before the protocol execution is given to i as a witness for its prime ei with
respect to the new accumulator.)

Revocation procedure. The new revocation algorithm Revoke of the ACJT scheme proceeds
as follows. In order to revoke a member i the group manager runs AccDel((p, q), ei, acc) to
compute the updated accumulator acc in the gpk . Note that ei is kept in reg [i]. Finally, the
group manager replaces the entry (ei, add) in upd with (ei, del).

Update procedure. The new update algorithm UpdM of the ACJT scheme proceeds as
follows. An unrevoked group member i in possession of (Ai, ei, acc i) obtains the recent changes
from upd (consisting of entries of the form (ej , del) and (ej , add)) and the current accumulator

Federal Office for Information Security 110

 � � � �

� �
� � � �

5. Group Signatures in the RSA Setting

acc from gpk . For each entry (ej , del) and (ej , add) member i executes the corresponding
witness update algorithm AccUpdW that results in an updated witness acc i for ei with respect
to the new accumulator acc.

Signature generation. The signing algorithm GSign takes as input (xi, Ai, ei), witness acci of
member i, and some message m ∈ {0, 1}∗ . In addition to computing T1, T2, and T3 as in Step 1
of the original ACJT signing procedure, the algorithm further picks random r1, r2, r3 ∈ ZlN/4J,
and computes values

ei hr1 r2 hr3Ce = g , Cacci = accih
r2 , Cr = g .

Additionally, the algorithm computes modified SoK signature S as follows: ⎡
 ⎤
γ γ
1 1 1 δa0 = T α
β

and 1 = T α and T2 = g1 a y 2 g

αhε
T3 = g and α ∈ Λ and β ∈ Γ

ς

⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦

SoK
 α, β, γ, δ, ε, ζ, φ, ψ, η, ς :
 m
 .
1

h
αhϕ ψhη = CαCe = g and Cr = g and acc acc

ς ξ
1 = Cα 1 1

r g h

The output of the algorithm is the group signature σ = (S, T1, T2, T3, Ce, Cacci , Cr).

In the modified signature generation algorithm value T3 acts as a commitment to the element
ei. Therefore, the modified ACJT scheme does not require any further groups beyond QR(N)
(for the original scheme) and QR(N) (for the accumulator). Note also that algorithms GVrfy,
Open, and Judge do not need any further modifications since the accumulator public key is
considered to be part of gpk . The use of the accumulator makes the original scheme, however,
almost twice as less efficient. Nevertheless, it provides revocation handling without sacrificing
security of the original schemes with regard to full-anonymity, insider traceability, and full
non-frameability, despite that values ei of all revoked and unrevoked members are now made
public.

5.3. The Tsudik-Xu Scheme

Tsudik and Xu [178] introduced a variant of the dynamic version of the ACJT scheme where
revocation is performed through a different dynamic accumulator that accumulates composite
numbers of the form e = e1e2 where e1 and e2 are prime numbers of sufficient length known
only to the user who generates e. At a high level, the idea of their signature scheme is to let
each new group member choose own composite number e within the joining procedure and let
the group manager accumulate e into the accumulator acc, which is part of the group public
key gpk . The knowledge of the factorization of e is then used by the group member to generate
group signatures. In the following we detail the algorithms and protocols of their scheme, which
we refer to as the TX scheme.

Federal Office for Information Security 111

5. Group Signatures in the RSA Setting

5.3.1. The TX Scheme

The TX group signature scheme is dynamic and offers verifiable opening. It uses RSA setting
and has several security parameters described in the following: Let c > 1 and c, p ∈ N, where
p determines the size of the modulus N and c denotes the output length of the used hash
function. Let λ1, λ2 denote lengths and Λ1, Λ2, Γ be three integral ranges satisfying the following
conditions:

• p > λ1 > c(λ2 + c) + 2

• Λ1 =]2λ1 − 2λ2 , 2λ1 + 2λ2 [

•	 Λ2 =]2λ1 , 2λ1+1 − 1[

, 22λ1+1[
• Γ =] − 22λ1+1

These conditions imply that 2λ1 − 2λ2 > 4 and (2λ1 − 2λ2)3 > (2λ1 + 2λ2)(2λ1+1 − 1). The TX
scheme has an implicit accumulator that accumulates composite numbers from the following
set:

X = {e1e2 | e1 is prime and e1 ∈ Λ1 and e2 is prime and e2 ∈ Λ2} ,

which is seen as a subset of X ' ⊆ {5, . . . , (2λ1 − 2λ2)3 − 1}.
Furthermore, the TX scheme assumes trusted setup in that it relies on the existence of the

public common reference string (N, g, h) such that N = (2p ' +1)(2q ' +1) is a safe RSA modulus
for some unknown prime numbers p ' , q ' of length p and g, h are random elements from QR(N)
with an unknown discrete logarithm of g and h to each other. Note that trusted generation
of the common reference string is necessary to prevent framing attacks of a dishonest group
manager.
In the following we specify the core algorithms and protocols of the TX scheme. Our descrip­

tion follows the specification from [178], except that we also provide a judgement procedure
that has been omitted in the original work.

Key generation. The key generation algorithm GKg on input p, c, and the common reference
string (N, g, h) performs the following steps:

1. Compute safe RSA modulus N as a product of two safe primes p = 2p ' +1 and q = 2q ' +1,
where p ' and q ' are primes of length p.

x2. Pick random x ∈R Z∗
p q and g ∈R QR(N). Compute y = g mod N .l l

3. Pick random t such that t is prime and its length |t| > c.

4. Pick random acc∅ ∈R QR(N) to initialize the accumulator.

5. Output (gpk , upd , gmsk , reg) such that:

• group public key gpk = (N, g, y, t, acc∅, N, g, h)

• initially empty public update information upd

Federal Office for Information Security 112

5. Group Signatures in the RSA Setting

• group manager’s secret key gmsk = (gpk , p ' , q ' , x)

• initially empty secret registration list reg .

It is assumed that key generation is performed in a trusted way to ensure the validity of the
group public key gpk . That is the RSA modulus N is assumed to be indeed safe and elements g
and acc∅ to be indeed chosen independently at random from QR(N). Note that this assumption
can be lifted using the costly NIZKPoK proofs from [59].

Join protocol. The join protocol Join is executed between the group manager GM with input
gmsk = (gpk , p ' , q ' , x) and a prospective member i with input gpk = (N, g, y, t, acc∅, N, g, h). It
proceeds as follows:

1. Member i picks random prime numbers ei,1 ∈R Λ1 and ei,2 ∈R Λ2, computes ei = ei,1ei,2

(in Z), and sends ei to GM.

2. GM proceeds if ei is odd, ei does not appear in the current update information upd , and
ei is in the range (2λ1 − 2λ2)2λ1 < ei < (2λ1 +2λ2)(2λ1+1 − 1). Let acci denote the current
accumulator value acc. GM updates acc in gpk to acci+1 = acc ei

i mod N and adds an
entry (ei, add) to the public update information upd . Then, GM sends (acci, ei) back to
i.

3. Member i checks whether acc ei
i = acc mod N and if so stores gsk [i] = (gpk , ei, acci, ei,1, ei,2)

as its secret signing key.

4. GM stores reg [i] = (acci, ei, transi) where transi is the communication transcript au­
thenticated by i.

It is implicitly assumed that authentication of transi performed by member i uniquely
identifies i. Similar to the ACJT scheme [11], this can be realized using PKI in which candidate
members possess certified private/public key pairs used to sign the transcript. For this reason
the join protocol has to be executed over a secure channel.

Note that the secret signing key gsk [i] contains the factorization of ei, i.e., prime numbers ei,1

and ei,2. These are assumed to be chosen by i in a trusted way such that factoring ei remains
hard. As discussed by Tsudik and Xu [178], since ei,1 ∈ Λ1 and ei,2 ∈ Λ2 the underlying
factorization assumption should hold even if (λ1 − λ2) higher-order bits of ei,1 are potentially
known to the adversary. The use of composite numbers ei states the difference to the Camenisch-
Lysyanskaya revocation mechanisms for the ACJT scheme [56] where ei being a public prime
number could not have been used to generate (unforgeable) group signatures alone and thus
another secret element Ai was required. On the other hand, the dynamic accumulation of
composite numbers ei used in the TX scheme proceeds similarly to the Camenisch-Lysyanskaya
accumulator. In particular, the addition, deletion, and update functions remain the same except
that ei being composite must also be odd. This is necessary for the later opening procedure
discussed below. Yet, the use of composite numbers imposes another inconvenience: Given
two accumulated values ei = ei,1ei,2 and ej = ej,1ej,2 it is possible to come up with another

Federal Office for Information Security 113

5. Group Signatures in the RSA Setting

accumulated value, e.g. ei,1ej,2 or ej,1ei,2. This means that two members i and j can collude
and produce a forged membership certificate. The TX scheme cannot prevent such abuses,
which as a consequence results in a weaker form of traceability. As we shall see in the opening
procedure, since the update information upd , which is updated on each joining and revocation
procedure, keeps track on all admitted group members and their accumulated composite values,
the group manager in the TX scheme can identify at least one of the colluding members.

Revocation procedure. The revocation algorithm Revoke takes as input the group manager’s
secret key gmsk = (gpk , p ' , q ' , x), the identity i ∈ [1, n] of a member to be revoked, the regis­
tration entry reg [i] = (acci, ei, transi), and the current update information upd . The group

−1 l lei mod 4p qmanager updates the accumulator acc in gpk to acc mod N and replaces the entry
(ei, add) in upd with (ei, del).

Update procedure. The update algorithm UpdM takes as input the secret signing key
gsk [i] = (gpk , ei, acci, ei,1, ei,2) of an unrevoked group member i and the public update in­
formation upd . It is assumed that i obtains the recent changes from upd consisting of entries
of the form (ej , del) and (ej , add) and that gpk includes the current accumulator value acc.
The algorithm proceeds as follows: c
•	 For all new entries (ej , del): Find integers a, b such that aei + b j ej = 1.

Update acci to acci

b · acca mod N .

•	 For all new entries (ej , add): Update acci to acc i
j ej mod N .

Note that since each accumulated composite value ej is odd it holds with high probability c
that values ei, j ej , and 4p ' q ' are co-prime. Therefore, the existence of values a and b which
can be found using the extended Euclidean algorithm (see, e.g. [171]) is guaranteed with said
high probability.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , ei, acci, ei,1, ei,2) of member i, where gpk = (N, g, y, t, acc, N, g, h), and a message
m ∈ {0, 1}∗, and proceeds as follows:

t N21. Pick random r1 ∈R Z∗
N and compute T1 = (1 + eiN)r1 mod .

2. Pick random r2 ∈R ±{0, 1}2Yp+Yc and compute

r2	 r2T2 = g mod N and T3 = acciy mod N.

3. Pick random r3 ∈R ±{0, 1}2Yp+Yc and compute

r3 hei,1	 ei,2T4 = g mod N and = T mod N.T5 4

Federal Office for Information Security 114

� � � �

5. Group Signatures in the RSA Setting

4. Compute S as a signature of knowledge
 ⎡
 ⎤

T1 = (1 + n)αβt mod N2 and T2 = gγ mod N

δ δ
= T α 1 mod N and 1 = T α 1

SoK

⎢⎢⎢⎣

⎥⎥⎥⎦

m .

α, β, γ, δ,
 mod N
acc
 3 y 2 g:
ε, ζ, ϕ, ψ εhα ζ hϕT5 = g mod N and T4 = g mod N

T5 = T4
ψ mod N and α ∈ Γ and ϕ ∈ Λ1 and ψ ∈ Λ2

5. Output group signature σ = (S, T1, T2, T3, T4, T5).

In the above signature generation algorithm T1 is an encryption of ei under the public key
(N, t) according to the public key encryption scheme of Paillier [156] and its modification by
Catalano et al. [65]; (T2, T3) is ElGamal encryption of acci in the QR(N) group under the
public key y; T4 is a variant of the Damg̊ard-Fujisaki commitment [80] to ei,1 under the public
key (N, g, h), whereas T5 can be seen as a corresponding commitment to ei. The SoK signature
S thus proves that the signer is in possession of (acci, ei) satisfying the relationship acc = acc ei

i

mod N and furthermore knows the factorization of ei given by ei,1 and ei,2, all of which are
in the appropriate integral ranges. Moreover, S proves that σ can be opened by the group
manager, who can decrypt ei.

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (N, g, y, t, acc, N, g, h), a message m, and a candidate group signature σ, and
proceeds as follows:

1. Parse σ as (S, T1, T2, T3, T4, T5).

2. If S is a valid SoK signature on message m and T5 = 1 mod N and T4 = T5
b mod N for

b = ±1 then output 1; otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the group manager’s
secret key gmsk = (gpk , p ' , q ' , x), message m, group signature σ, registration list reg =
{(acci, ei, transi)i∈[1,n]}, and current update information upd , and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

−t mod N2)−1(T1r12. Compute r1 = (T1 mod N)1/t mod N and ei =
N .

3. Compute acci =
T
T3
x mod N .
2

4. If (ei, add) ∈ upd then:

• Find i for which reg [i] = (acci, ei, transi).
x T3• Compute J as NIZKPoK x : y = g and

acci
= T x .2

• Output (i, τ), where τ = (r1, J, transi).

5. Else if (ei, add) ∈ upd then:

Federal Office for Information Security 115

5. Group Signatures in the RSA Setting

•	 Find an entry (ej , add) ∈ upd for which ej > gcd(ei, ej) > 1.

•	 Find j for which reg [j] = (accj , ej , transj).

•	 Output (j, τ), where τ = (r1, ei, transj).

The above opening procedure distinguishes between two cases depending on the occurrence of
decrypted ei in the update information upd : (1) If ei belongs to some previously admitted
unrevoked group member i then the group manager can identify that member and provide the
corresponding proof τ , which includes value r1 that was used as randomness in the computation
of T1, a NIZKPoK proof for the valid decryption of acci from the ElGamal ciphertext (T2, T3),
and transcript transi authenticated by member i which contains (acci, ei); alternatively, (2) ei
is a value that is accumulated in acc but does not belong to any group member. In this case
ei must have been computed as a product of at most two (due to the integral checks) factors c
of other legitimately accumulated values. That is ei must divide the product j ej where each
ej corresponds to some entry (ej , add) ∈ upd . The opening procedure thus finds ej for which
one of its factors (ej,1 or ej,2) was used to compute ei and provides a proof τ of this fact. This
proof includes again the randomness r1 used to compute the ciphertext T1, the decrypted value
ei, and the transcript transj , which contains, in particular, ej authenticated by member j.
Tsudik and Xu [178] suggest that in this case member j should also be revoked.

Judgement procedure. The judgement algorithm Judge takes as input the group public key
gpk = (N, g, y, t, acc, N, g, h), message m, signature σ, identity i, and proof τ , and proceeds as
follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse σ as (S, T1, T2, T3, T4, T5).

3. If	 τ contains (r1, J, transi) then if all of the following holds then output 1; otherwise
output 0:

•	 T1 = (1 + eiN)r1
t mod N2 and J is a valid NIZKPoK proof

(both are checked using (acci, ei) from transi)

•	 transi is authenticated by i.

4. Else if τ contains (r1, ej , transi) then if all of the following holds then output 1; otherwise
output 0:

•	 T1 = (1 + ej N)r1
t mod N2

•	 ei > gcd(ej , ei) > 1 using ei from transi

•	 transi is authenticated by i.

The judgement procedure depends on whether the opening procedure identified the actual
signer or some member whose secret key was partially involved in the generation of the signa­
ture. In both cases the algorithm checks that decryption of ei resp. ej from T1 was performed
correctly by recomputing the ciphertext T1. This check holds since the encryption operation

Federal Office for Information Security 116

5. Group Signatures in the RSA Setting

from [65] is used as a commitment to the encrypted value ei resp. ej that can be verified using
the randomness r1 used in the generation of the ciphertext (commitment) T1. Then, depending
on the nature of the proof τ , either the validity of the NIZKPoK proof J is checked or the
relationship ei > gcd(ej , ei) > 1. In both cases the actual identity of member i is publicly
verified using the authenticated transcript transi.

5.3.2. Security of the TX Scheme

The original security proofs for the TX scheme addressed several building blocks of the scheme
and proved separate requirements of unforgeability, anonymity, unlinkability, exculpability, and
coalition-resistance. In particular, Tsudik and Xu [178] gave a separate construction of the
dynamic accumulator for composite numbers and proved its security under the Strong RSA
assumption. Furthermore, they proved that the interactive version of the protocol underlying
the SoK signature S in the algorithm GSign has an (honest-verifier) statistical ZK property
whereas its soundness and PoK properties hold under the assumptions that the encryption
schemes by Catalano et al. [65] used to compute T1 and ElGamal encryption used to compute
T2 and T3 offer IND-CPA security, while the commitment scheme by Damg̊ard and Fujisaki
[80] offers computational binding, and factoring of composite numbers ei is computationally
hard, even if a small fraction of higher-order bits of one of the primes is known. Observe that:
(1) IND-CPA security of the ElGamal encryption scheme in QR(N) groups holds under the
respective DDH assumption (see Definition 3.4); (2) IND-CPA security of the Catalano et al.
encryption scheme holds under the Decision Small Residuosity (DSR) assumption (see [65] for
further details); (3) Damg̊ard-Fujisaki commitment schemes offer computational binding under
a slightly more general Strong RSA assumption (see [80] for further details).
In the following we intuitively revisit the security of the TX scheme in the light of our

definitions for anonymity, traceability, and non-frameability from Sections 2.2 and 2.3.

Anonymity. The TX scheme does not satisfy the full anonymity notion from Definition 2.12 for
the following reason: If the adversary knows all secret signing keys, which include factorizations
(ei,1, ei,2) of ei then for the challenge group signature σ∗ , containing values T4

∗ and T5
∗ , the

∗ei,2following test whether T5
∗ = T 4 mod N, performed for all ei,2 would immediate reveal the

signer. In contrast, the TX scheme may still satisfy the notion of insider anonymity (which
assumes that at least two group members remain uncorrupted) in the Random Oracle Model,
assuming the IND-CPA security of ElGamal encryption in QR(N), the IND-CPA security
of the encryption scheme by Catalano et al. [65], and hardness of factoring ei. Note also
that knowledge of secret signing keys gsk [i] of all other group members would not help the
adversary A in distinguishing, whether the challenge group signature σ∗ has been produced by
uncorrupted signers i0 or signer i1, due to the statistical ZK property of the corresponding SoK
signature.

Traceability. Since TX scheme is dynamic and cannot provide full traceability, as mentioned
in Section 2.2.4. The TX scheme does, however, seem to offer insider traceability from Definition
2.18, but only in a weaker sense. Since the group manager remains honest and each joining
member i authenticates the transcript transi the adversary A has to come up with the SoK

Federal Office for Information Security 117

5. Group Signatures in the RSA Setting

signature S∗ which is valid for (T1
∗, T 2

∗, T 3
∗, T 4

∗, T 5
∗) and message m ∗, while the algorithm Open

executed by the group manager on σ∗ outputs i = 0 or some pair (i∗, τ ∗) that is rejected by
the algorithm Judge. The soundness property of the SoK signature ensures that if σ∗ is valid
then components T1

∗ , T2
∗, and T3

∗ encrypt (ei, acci) for which acc = acc ei
i mod N . The security

of the dynamic accumulator guarantees furthermore that Open, in addition to the proof τ ,
will output either identity i∗ = i whom decrypted ei belongs to or identity i∗ = j for which
one of the factors of ej has been used in the computation of ei. In any case, the probability
that Open outputs i∗ = 0 would remain negligible. Nonetheless, the group manager may not
be able to identify all (colluding) members that were involved in the generation of σ∗ . The
probability that Judge algorithm rejects the output pair (i∗, τ ∗) seems still negligible due to
the following assumptions: In case where i∗ = i is the signer of σ∗, the acceptance of τ ∗ is
guaranteed primarily by the binding property of the encryption scheme from [65], when viewed
as a commitment scheme, and the soundness property of the NIZKPoK proof J . Whereas, if
i∗ = j is the identity of one of the colluding members j, the acceptance of τ ∗ is guaranteed by
the security of the dynamic accumulator, in addition to the binding property of the encryption
scheme from [65], when viewed as a commitment scheme.

Non-Frameability. The TX scheme seems to satisfy the notion of full non-frameability from
Definition 2.21. The reason is that Judge algorithm first ensures that (m ∗, σ∗) can be successfully
verified. The PoK property of the SoK signature S∗ (which is part of σ∗) guarantees that σ∗

has been produced with knowledge of factors ei∗ ,1 and ei∗ ,2 of the corresponding composite
value ei∗ . Although the adversary A may learn ei∗ by acting as the group manager in the
join protocol, it is hard for A to actually obtain these factors due to the hardness of the
factorization assumption. Note that A could still generate (m ∗, σ∗) on behalf of some corrupted
group member or a coalition of such members and attempt to provide a proof τ ∗ that this pair
opens to some honest member i∗ . This is, however, prevented by the assumption that each
transcript uniquely identifies the group member (who authenticated this transcript before) and
the soundness property of the NIZKPoK proof J .

5.4. The Camenisch-Groth Scheme

In this section we present the group signature scheme and its extensions proposed by Camenisch
and Groth [49]. This scheme, which we refer to as CG, basically provides two different types.
The basic CG scheme is static while the offered extensions are fully dynamic, providing a
joining and a revocation algorithm. So the basic scheme belongs to the class of schemes that
were defined in Section 2.1 while the extended scheme belongs to the class of schemes that were
defined in Section 2.2. The CG scheme is a further development of the previously described
ACJT scheme (Section 5.1). It is significantly faster than the ACJT scheme also because it has
a more efficient joining protocol. In the following we provide the description of the basic CG
scheme and its two extensions.

Federal Office for Information Security 118

5. Group Signatures in the RSA Setting

5.4.1. The Basic CG Scheme

The basic CG group signature scheme is static. It uses RSA setting in the random oracle
model and a DL assumption. Let c, e, s, E , Q, N , P denote lengths derived from the security
parameter κ satisfying the following conditions:

•	 c denotes the length of the output of the used hash function.

•	 For every integer a, an integer r of the length |a|+ s can be chosen randomly, so that a+r
and r are statistically indistinguishable. That is, for all distinguishers A the probability
that A correctly distiguishes between r and r + a is smaller than some fixed c > 0.

•	 e large enough to assign different numbers to all members and to make all Ei constructed
during key generation prime.

•	 c + e + s + 1 < Q

•	 c + Q + s + 1 < E < N /2

The relations between the lengths are chosen according to the Camenisch-Lysyanskaya signature
scheme [55, 133]. In the following we specify the core algorithms and protocols of the basic CG
scheme. Our description follows the specification from [49].

Key generation. The key generation algorithm GKg on input 1κ and n where n ∈ N denotes
the total number of group members performs the following steps:

1. Compute safe RSA	 modulus N using the RSAGen(1YN) algorithm as defined in Sec­
tion 3.2.1.

2. Choose random elements a, g, h ∈R QR(N).

3. Choose random primes Q, P of length Q, P with Q|P − 1.

4. Pick XG, XH with G = F XG mod P and H = F XH mod P where F ∈R Z∗ of∈R ZQ	 P

order Q.

5. Select x1, . . . , xn ∈R ZQ and r1, . . . , rn ∈R ZN .

6. Choose e1, . . . , en ∈R {0, 1}Ye such that E1 = 2YE + e1, . . . , En = 2YE + en are primes.

7. Compute y1, . . . , yn with y1
E1 = agx1 hr1 mod N, . . . , yn

En = agxn hrn mod N .

8. Compute Y1 = Gx1 mod P, . . . , Yn = Gxn mod P .

9. Output (gpk , gmsk , gsk) such that:

•	 group public key gpk = (N, a, g, h, F, G, H, P, Q)

•	 group manager’s secret key gmsk = (gpk , XG, Y1, . . . , Yk)

•	 n-vector of secret signing keys of member i: gsk [i] = (gpk , xi, yi, ei, ri)

Federal Office for Information Security 119

5. Group Signatures in the RSA Setting

It is assumed that key generation is performed in a trusted way. In particular, this means
that the RSA modulus N is indeed safe and that elements a, g, h are chosen independently at
random from QR(N). This assumption is necessary to ensure trust into the group public key
gpk . The CG scheme is based on the Camenisch-Lysyanskaya signature scheme [55, 133] and
the discrete logarithm in (F). The members secret keys contain in fact an ordinary Camenisch-
Lysyanskaya signature (yi, ei, ri) on the member’s secret xi. The values a, g, h, xi also come
from the Camenisch-Lysyanskaya signature scheme. The construction of Ei ensures that 2YE >

> 2YE −1Ei . But instead of storing the large exponent Ei, it is sufficient to store the smaller
value ei. Since the discrete logarithm XG of G is included into gmsk the group manager is able
to decrypt Yi and identify the signer. The discrete logarithm XH of H is of no interest for the
opening procedure as only G is used to generate Yi. In contrast, H is needed to simulate group
signatures on behalf of a member i, this ability is used to prove the anonymity property of the
scheme.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , xi, yi, ei, ri) of member i, where gpk = (N, a, g, h, F, G, H, P, Q) and a message
m ∈ {0, 1}∗ and proceeds as follows:

1. Pick random r ∈R {0, 1}YN /2 and R ∈R ZQ and compute

T1 = hr yi mod N, T2 = F R mod P, T3 = GR+xi = GRYi mod P, T4 = HR+ei mod P.

2. Compute S as a signature of knowledge ⎡
 ⎤

ξ, ρ, ε, τ :

(E +ε a = T1
2 g−ξhρ mod N and T2 = F τ mod P

T3 = Gτ+ξ mod P and T4 = Hτ +ε mod P
ε ∈ {−2Ye+Yc+Ys , +2Ye+Yc+Ys }
ξ ∈ {−2YQ+Yc+Ys , +2YQ+Yc+Ys }

⎢⎢⎣

⎥⎥⎦
SoK
 m .

3. Output group signature σ = (S, T1, T2, T3, T4).

The pair (T2, T3) is an ElGamal encryption of Yi and the SoK signature proves additionally that
the signer knows the corresponding xi. Using the values T1 and T4 the SoK signature proves
further that the signer is in possession of a valid signature (yi, ei, ri).

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (N, a, g, h, F, G, H, P, Q), a message m and a candidate group signature σ and
proceeds as follows:

1. Parse σ as (S, T1, T2, T3, T4).

2. If S is a valid SoK signature on message m then output 1; otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the group manager’s secret
key gmsk = (gpk , XG, Y1, . . . , Yk), the registration information reg , a message m and a group
signature σ, and proceeds as follows:

Federal Office for Information Security 120

5. Group Signatures in the RSA Setting

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse σ as (S, T1, T2, T3, T4).

3. Compute Yi = T3/T2
XG mod P .

4. If there exists i with reg [i] contains Yi, then output i; otherwise output 0.

This ensures that only the group manager, knowing the Yi and XG is able to open a signature.

5.4.2. Security of the Basic CG Scheme

Camenisch and Groth proved that their basic group signature scheme has full traceability and
full anonymity according to the definitions of Bellare et al. [22]. In the following we discuss
its security in the light of our notions for anonymity, traceability and non-frameability from
Section 2.1.

Anonymity. The basic CG scheme seems to offer full anonymity from Definition 2.4 in the
Random Oracle Model under the DL assumption from Definition 3.5 in QR(N) groups and
under the strong RSA assumption in Z∗

N groups from Definition 3.3. The knowledge of se­
cret signing keys gsk [i] of all group members does not help the adversary A in distinguishing,
whether the challenge signature σ = (S, T1, T2, T3, T4) has been produced by signer i0 or signer
i1, since the corresponding SoK has statistical ZK property, i.e., it does not reveal any infor­
mation about gsk [ib] and even if gsk [i0] and gsk [i1] are known to A (which full anonymity
implicitly assumes) then distinguishing whether these values have been used to compute T1,
T2, T3 and T4 is hard under the DL assumption in QR(N) groups. From this it follows that
the adversary is not able to distinguish whether the signature has been produced by member 0
or member 1.

Traceability. The basic CG scheme seems to offer full traceability guarantees from Definition
2.6 in the Random Oracle Model under the DL assumption in QR(N) groups and under the
strong RSA assumption in Z∗ groups.N In particular, an adversary on input (gpk , gmsk , gsk)
would not be able to generate a valid message-signature pair (m ∗, σ∗) which does not open to
some member of the group. At first we notice that due to the zero knowledge property of the
proof of knowledge of xi, the signing oracle reveals nothing about the corresponding witness xi.
The knowledge of the group manager’s secret key Yi = Gxi mod P allows furthermore perfect
simulation of group signatures without possession of xi. Due to the DL assumption, it seems
infeasible for the adversary A that does not know xi to come up with a valid group signature
σ∗ on some new message m ∗ where Yi would be encrypted in σ∗ . Finally, we observe that the
existential unforgeability of the used Camenisch-Lysyanskaya signature scheme implies that a
valid group signature contains Gxi within its components (T2, T3).

Non-Frameability. The basic CG scheme seems to satisfy the requirement of full non­
frameability from Definition 2.8 in the Random Oracle Model under the DL assumption in

Federal Office for Information Security 121

5. Group Signatures in the RSA Setting

QR(N) groups from Definition 3.5 and under the strong RSA assumption in Z∗ groups from N

Definition 3.3. Using the same arguments as for the traceability it would be possible to show
that any adversary with input (gpk , gmsk) and with limited access to the oracles Corrupt(·)
and GSign(gsk [·], ·) will not succeed in outputting a valid message-signature pair (m ∗, σ∗) that
would point to some member i of the group.

5.4.3. Dynamic Extensions of the CG Scheme

Camenisch and Groth [49] proposed several extensions to their basic scheme aiming to intro­
duce support for dynamic behavior and revocation. These extensions offer a protocol for the
admission of new group members and algorithms for their revocation. The first extension, de­
tailed in the following, prevents revoked members from issuing valid group signatures under the
current group public key. This is realized using an approach, which resembles the accumulator
for prime numbers from [56] with some modifications making the update of the accumulator
upon the admission of new group members obsolete. The second extension, which we briefly
discuss in the next section, can be further used to prevent signers from claiming validity of
their group signatures under older public keys. It is realized using an approach that is similar
to revocation lists.

Key generation. The key generation algorithm GKg on input 1κ updates the original key
generation algorithm such that:

1. The number of group members is set to zero, i.e., gsk is empty.

2. An additional random element	 w ∈R QR(N) is chosen and added to the group public
key.

3. The element g is computed as g = hξ mod N with ξ ∈R ZQ.

4. Output (gpk , gmsk , reg) such that:

•	 group public key gpk = (N, a, g, h, F, G, H, P, Q, w)

•	 group manager’s secret key gmsk = (gpk , p, q, XG) (where p, q are the factors of N
returned by RSAGen(1YN))

•	 registration list reg is initially empty.

It is assumed that key generation is performed in a trusted way. Otherwise a zero knowledge
proof of knowledge of the value ξ can assure the correctness of the group public key. The
additional value of w allows the user to chose his secret xi on his own and allows him to prove
knowledge of a root of w in the signing process.

Join protocol. The join protocol Join is executed between the group manager with input
gmsk = (gpk , p, q, XG) and a prospective member i with input gpk = (N, a, g, h, F, G, H, P, Q, w).
It proceeds as follows:

Federal Office for Information Security 122

5. Group Signatures in the RSA Setting

1. Member i picks random xi ∈R ZQ and r ' ∈R ZN , computes Yi = Gxi mod P and Ci =
g

l
mod N and sends Yi, Ci to the group manager together with the proof xi hri

α	 αhβNIZKPoK α, β : Yi = g mod P	 and Ci = g mod N .

2. The group manager proceeds if the proof above was correct.

•	 The group manager picks ei ∈R {0, 1}Ye such that Ei = 2YE + ei is prime.
E−1
i• The group manager computes wi = w mod N .

''	 i)E
−1
i• The group manager selects ri ∈R ZYe	 and computes yi = (aCih

rll mod N which
requires the knowledge of gmsk , i.e., the factorization p, q of N .

• The group manager sets reg [i] = (wi, Yi, Ei) and sends (wi, yi, Ei, r i
'') back to member

i.

3. Member i stores gsk [i] = (gpk , wi, xi, ri, yi, ei) with ri = ri
' + ri

'' and ei = Ei − 2YE as its
secret signing key.

This protocol is very similar to the ACJT joining protocol, but takes only two rounds. As in the
static CG scheme the member gets a Camenisch-Lysyanskaya signature of the group manager
that proves his membership of the group. The additional wi allows members to dynamically
join the group and the group manager to revoke their memberships.

Revocation procedure. The revocation algorithm Revoke takes as input the group manager’s
secret key gmsk = (gpk , p, q, XG), the identity i ∈ [1, n] of a member to be revoked, the
registration entry reg [i] = (wi, Yi, Ei) and the current update information upd and proceeds
as follows:

1. Publish (i, Ei, del) in upd .

i2. Replace w in gpk with wE−1
mod N , whereby the inverse Ei

−1 is computed using the
factors p and q from gmsk .

Observe that each revocation event results in the growth of the published update information
upd .

Update procedure. The randomized update algorithm UpdM takes as input the current secret
signing key gsk [i] and at least the update information upd , and results in a modification of
gsk [i] = (gpk , wi, xi, ri, yi, ei). For each new (j, Ej , del) in upd proceed as follows:

1. Find α, β such that αEi + βEj = 1.

2. Replace wi in gsk [i] with wi
β wα mod N .

Notice that the update procedure provides each unrevoked group member i with a new value
wi, which corresponds to the Ei-th root of the current value w published in gpk .

Signature generation. The signing algorithm updates the original signing algorithm such
that:

Federal Office for Information Security 123

5. Group Signatures in the RSA Setting

1. T1 is computed as T1 = hryiwi mod N .

2. In the signature of knowledge S value aw = T1
2(E +ε g−ξhρ mod N is used instead of a.

3. The output group signature is σ = (S, T1, T2, T3, T4).

This change in the signature generation ensures that only members knowing a root of the
current value w from the group public key are able to sign. In particular, revoked member do
no longer have knowledge of the appropriate root and thus cannot sign.

Signature verification. The procedure is the same as in the static CG scheme.

Opening procedure. The procedure is the same as in the static CG scheme.

In the following we briefly revisit the security of the dynamic CG scheme in the light of our
definitions for anonymity, traceability and non-frameability from Section 2.2. The dynamic
extension of the CG scheme satisfies the full anonymity notion from Definition 2.12 in the
Random Oracle Model as the ability to adaptively joining new members to the group is of no
advantage for the adversary. The member’s secret xi is hidden through the zero knowledge proof
of knowledge during the join protocol. The dynamic CG scheme cannot satisfy full traceability
as mentioned in Section 2.2.5. But since Yi stays the same in the dynamic extension it still
offers insider traceability from Definition 2.5. The full non-frameability from Definition 2.15
follows directly from the full non-frameability of the static CG scheme because member i is still
the only one who knows the discrete logarithm of Yi.

Extension with Full Revocation

The second dynamic extension of the CG signature scheme offers support for full revocation.
This mechanism aims to eliminate the problem with the previous revocation process where
revoked members could still claim validity of the group signatures under older public keys.
This is prevented by extending the accumulator-based approach from the previous section with
an additional token si that is generated by the candidate member during the joining procedure.
In order to revoke the signer the full revocation algorithm, executed by the group manager,
publishes si in the public update information upd . This revocation method thus combines
the use of the accumulator with a revocation list. The main technical idea behind this new
approach is to let the group manager sign si as part of the issued membership credential such
that the group member by committing to si during the signature generation can still prove
the possession of a valid individual secret signing key and preserve unlinkability of his group
signatures. Once the token si is published all signatures issued by the member i become linkable
and are no longer treated as valid. The verification algorithm performs revocation checks with
all so far published revocation tokens to detect whether the signer is revoked. This introduces
linear costs to the verification procedure.

Federal Office for Information Security 124

5. Group Signatures in the RSA Setting

5.5. The Kiayias-Yung Scheme

In this section we present the dynamic group signature scheme proposed by Kiayias and
Yung [119, 121]. This scheme, which we refer to as KY, belongs to the class of schemes
that were defined in Section 2.3 since it admits an explicit opening proof as outlined by the
authors. Furthermore, the KY scheme can be modified to a scheme with distributed authorities
defined in Section 2.4. The KY scheme can be seen as a modification of the ACJT scheme (cf.
Section 5.1).

5.5.1. The KY Scheme

The KY group signature scheme is dynamic and works in the RSA setting. Let , µ, k, ε denote
integers satisfying the following conditions:

•	 S(2Y , 2µ) = {2Y − 2µ + 1, . . . , 2Y + 2µ − 1} ⊆ {1, . . . , p ' q ' } where p ' , q ' are the same as used
in the RSAGen algorithm, defined in Section 3.2.1.

•	 ε > 1.

•	 S(2Y , 2ε(µ+k)+2) ⊆ {5, . . . , min{p ' , q ' } − 1}.

In the following we specify the core algorithms and protocols of the KY scheme. Our description
follows the specification from [119, 121].

Key generation. The key generation algorithm GKg on input 1κ performs the following steps:

1. Use RSAGen to generate a tuple (N, p, q, p ' , q ') where (N, p, q) is the output of the RSAGen
algorithm and p ' , q ' are the two primes used during the RSAGen algorithm.

2. Chose an element g as quadratic residue modulo N , that is generator of QR(N).

l)−1 l)−1(q (p
3. Compute	 a generator a = ρ(g1 , g2) of QR(N) using the Chinese remaindering

mapping ρ from Z∗
p × Z∗ to Z∗ and g1, g2 as non-trivial quadratic residues modulo pq N

and modulo q, respectively. That is g1, g2 ∈ {0, 1}. Note that ρ preserves the quadratic
residuosity, i.e., ∀x ∈ QR(p) ∀y ∈ QR(q) ∃z ∈ QR(N) ρ(x, y) = z.

4. Select x, x̂ ∈R Zp∗
q and a0, a, h ∈R QR(N).l l

5. Compute y = gx, ŷ = gx̂.

6. Output (gpk , gmsk , reg) such that:

•	 group public key gpk = (N, a0, a, g, h, y, ŷ)

•	 group manager’s secret key gmsk = (gpk , p, q, x, x̂)

•	 registration list reg is initially empty.

Federal Office for Information Security 125

5. Group Signatures in the RSA Setting

Join protocol. The join protocol Join is executed between the group manager with input
gmsk = (gpk , p, q, x, x̂), a prospective member i with input gpk = (N, a0, a, g, h, y, ŷ) and a
trusted third party T with input gpk = (N, a0, a, g, h, y, ŷ). It proceeds as follows:

1. Member i asks T to start the joining process.

xi2. T selects a random xi ∈R lN/4J and computes Ci = a mod N .

3. T sends Ci to the group manager and xi to the member.

4. The group manager selects a random prime ei ∈R S(2
Y , 2µ)−{p ' , q ' } = {2Y −2µ +1, . . . , 2Y +

2µ − 1} − {p ' , q ' } and computes Ai = (a0Ci)
1/ei mod N .

5. The group manager stores (Ai, ei, Ci, transi) to reg [i] where transi is the communication
transcript and sends (Ai, ei) back to member i.

6. Member i sets gsk [i] = (gpk , Ai, ei, xi)

Note that the join protocol of the KY scheme is executed with the assistance of some third
trusted party T . Furthermore, Kiayias and Yung [119, 121] distinguish between the member’s
certificate and the member’s secret. The member’s secret x is the private key of an ElGamal
key pair. The group manager generates the certificate (Ai, ei) over the public value a0, a that
attests member’s i membership in the group. The communication transcripts transi that the
issuer stores in reg are assumed to be authenticated by member i in a way that any publication
of transi uniquely identifies i as participant of that join protocol.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , Ai, ei, xi) of member i, with gpk = (N, a0, a, g, h, y, ŷ) and a message m ∈ {0, 1}∗

and proceeds as follows:

1. Pick random r, r̂ ∈R lN/4J and compute

r r r̂ r̂ ei hrT1 = Aiy mod N, T2 = g mod N, T3 = Aiŷ mod N, T4 = g mod N, T5 = g mod N

2. Compute S as a signature of knowledge of α, β, γ, δ, c, ζ ⎤⎡

SoK

⎢⎢⎣
 α, β, γ, δ, c, ζ :

T1/T3 = yα/ŷβ mod N and T2 = gα mod N

T3 = gβ mod N and T5 = gγ hα mod N

T γ Y T γ
2 = g mod N and 1 = a0aδ Yy
 mod N

⎥⎥⎦
 m
 .

T5 = g(g2)ζ hα mod N

3. Output group signature σ = (S, T1, T2, T3, T4, T5).

The pairs (T1, T2) and (T3, T4) form ElGamal ciphertexts of Ai in the QR(N) group. The SoK
signature S ensures that those pairs do, actually, encrypt the same value Ai. Furthermore, S
proves that the signer is a member of the group by proving knowledge of a valid certificate
(Ai, ei) issued by the group manager.

Federal Office for Information Security 126

5. Group Signatures in the RSA Setting

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (N, a0, a, g, h, y, ŷ), a message m and a candidate group signature σ, and
proceeds as follows:

1. Parse σ as (S, T1, T2, T3, T4, T5).

2. If S is a valid SoK signature on message m then output 1; otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the group manager’s secret
key gmsk = (gpk , p, q, x, x̂), a message m and a group signature σ, and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse σ as (S, T1, T2, T3, T4, T5).

3. Get Ai = (T1T2
−x)2 mod N using ElGamal.

4. Find i such that reg [i] = (Ai, ei) if no such entry exists output 0.

5. Compute J as

T 2 = T 2ω ω
NIZKPoK ω : 1 2 Ai mod N and y = g mod N .

6. Output (i, τ) with τ = ((Ai, ei, Ci, transi), J).

To prevent the group manager from outputting arbitrary identities i the opening procedure, ad­
ditionally, proves that the ciphertext (T1, T2) was decrypted correctly through the corresponding
NIZPoK proof τ .

Judgement procedure. The judgement algorithm Judge takes as input the group public key
gpk = (N, a0, a, g, h, y, ŷ), a message m, a signature σ, an identity i, and a proof τ , and proceeds
as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse τ as ((Ai, ei, Ci, transi), J).

3. If all of the following holds then output 1; otherwise output 0:

• J is a valid NIZKPoK proof.

• Ai is included in transi.

• transi is authenticated by i

• (Ai, ei) satisfies A
e
i
i = a0Ci mod N .

The validity of the NIZKPoK proof J ensures, that the opener correctly decrypted the claimed
value Ai from the ElGamal ciphertext (T1, T2). The proof that Ai identifies i stems from the
authenticity of the transcript transi in combination with the validity check of the disclosed
certificate (Ai, ei).

Federal Office for Information Security 127

5. Group Signatures in the RSA Setting

5.5.2. Security of the KY Scheme

In the following we discuss security of the KY scheme considering our notions for anonymity,
traceability and non-frameability from Section 2.3.

Anonymity. The KY scheme seems to offer full anonymity from Definition 2.12. This seems
to hold in the Random Oracle Model under the DDH assumption from Definition 3.6. Note
that this assumption holds even if the factorization of the RSA modulus N becomes public. It
seems possible to transform any adversary against the full anonymity of KY signatures into an
IND-CPA adversary against a variant of the ElGamal encryption scheme in the QR(N) group,
where factorization is not used for the purpose of decryption and can be made public.

Traceability. The KY scheme cannot satisfy full traceability as mentioned in Section 2.3.5.
The KY scheme, however, seems to guarantee insider traceability from Definition 2.18 under the
strong RSA assumption from Defintion 3.3 in the Random Oracle Model. From the strong RSA
assumption it follows directly that an adversary on input gpk would not be able to generate
a valid message-signature pair (m ∗, σ∗), which cannot be open then to some member of the
group. Due to the correctness of the KY scheme the judgement procedure will never output 0
if the signature is verifiable and the opening procedure returns i = 0.

Non-Frameability. The KY scheme seems to satisfy the notion of full non-frameability from
Definition 2.21 under the DL assumption over QR(N) groups with known factorization from
Definition 3.5 in the Random Oracle Model, where the factorization of N is known to the
adversary. An adversary with input (gpk , gmsk , reg), which is able to output a valid message­
signature pair (m ∗, σ∗) on behalf of some group member i can be used to compute the discrete
logarithm of A to the base a. Furthermore, the soundness property of the NIZKPoK J and
the authentication of the transcript transi by an honest member i prevent the adversary being
in control of the group manager from outputting a message-signature pair (m ∗, σ∗) that would
open to i and for which the algorithm Judge would output 1.

5.5.3. The KY Scheme with Distributed Authorities

As mentioned before the KY scheme offers an easy way to distribute the role of the group
manager across an issuer and an opener, resulting in a DA-scheme as defined in Section 2.4.
The only modification concerns the key generation process. Namely, the modified key generation
algorithm GKg on input 1κ modifies the output (gpk , ik , reg , ok) of the original key generation
algorithm such that:

• group public key gpk = (N, a0, a, g, h, y, ŷ)

• secret issuing key ik = (gpk , p, q)

• secret opening key ok = (gpk , x, x̂)

• registration list reg is initially empty.

Federal Office for Information Security 128

5. Group Signatures in the RSA Setting

This is the only modification needed to obtain the DA-scheme out of the basic KY scheme.
Note that the group manager’s secret key gmsk is divided into two parts: the secret issuing key
ik and the secret opening key ok. The issuer obtains the prime factors p and q of N needed
to admit prospective group members by executing the original join protocol. More precisely,
a prospective group member i interacts with the trusted third party T and the issuer in the
join protocol to obtain his secret signing key gsk [i]. On the other hand, the opener obtains
the discrete logarithms x and x̂ of the corresponding public values y and ŷ needed to identify
signers. Thus, the KY group signature scheme with distributed authorities has almost the same
specification as the scheme with a single group manager. In particular, it also offers the same
level of security as the basic scheme.

Federal Office for Information Security 129

6.	 Group Signatures in the Discrete
Logarithm Setting

So far only few schemes have been proposed in the DL setting. These schemes are typically less
efficient than schemes in the RSA setting and the lack of trapdoor permutations (that seem to be
necessary for constructing group signatures satisfying modern security definitions) in the pure
DL setting makes their design challenging. Therefore, many schemes use a rather mixed setting,
by employing the additional RSA parameters, typically generated in some trusted way. An early
dynamic but inefficient construction in the DL setting was proposed by Chen and Pedersen [73].
In particular, the length of signatures produced by this scheme was not constant and its security
with respect to modern definitions is questionable, e.g. the scheme cannot prevent framing
attacks, mounted by coalitions of malicious group members. Moreover, identification of the
signer had to be performed through a cooperation of group members. Similar drawbacks were
also inherent to another scheme in the DL setting, proposed by Petersen [160]. Ateniese and
de Medeiro [12] came up with a construction in a mixed setting, where in addition to the DL
setting they required RSA parameters generated by a trusted party; however, without requiring
knowledge of factorization (the trapdoor property) for the functionality of the scheme. Later,
Furukawa and Yonezawa [94] came up with a slightly different version of the scheme, where
no additional RSA parameters were used and management authorities were separated. In the
following we describe these two schemes in more detail.

6.1.	 The Ateniese-de Medeiros Scheme

In this section we present the group signature scheme proposed by Ateniese and Medeiros [12].
This scheme, which we refer to as AM, is dynamic and offers verifiable opening. It thus belongs
to the class of schemes that were defined in Section 2.3. In the following we provide the
description of the AM scheme and discuss its security.

6.1.1. The AM Scheme

The AM group signature scheme is dynamic and offers verifiable opening. It uses the DL setting
and has three security parameters κ, λ1, and λ2 where λ1 < λ2. Furthermore the scheme assumes
the existence of a trusted party and a public key infrastructure. In the following we specify
the core algorithms and protocols of the AM scheme. Our description follows the specification
from [12], except that we also provide the specification of the judgement procedure that has
been omitted in the original work.

131

6. Group Signatures in the Discrete Logarithm Setting

Key generation. The key generation algorithm GKg on input κ performs the following steps:

¯ ¯1. Pick primes P , Q, P such that |Q| = κ, P = 2Q + 1 and P = 2P + 1. Let G be QR(P)
(of order Q) and let F be QR(P̄) (of order P).

2. Pick three random generators g, g1, g2 of G.

3. Trusted party computes safe RSA modulus N using the RSAGen(12κ) algorithm. Let E
denote QR(N).

x4. Pick random x ∈R ZQ and compute y = g mod P .

x5. Pick random z ∈R ZQ and compute y2 = g2 mod P .

6. Output (gpk , gmsk , reg) such that:

• group public key gpk = (P, Q, P̄ , N, g, g1, g2, y, y2)

• group manager’s secret key gmsk = (gpk , x, z)

• reg is the initially empty registration list.

Note that the order of E remains unknown and several groups could safely share the parameters
P, Q, P̄ , N, g, g1, g2 as long as N was computed by a trusted party and the factorization is never
revealed. The RSA modulus N and the auxiliary group E are required for committing to several
values during the signature generation.

Join protocol. The join protocol Join is executed between the group manager with input
gmsk = (gpk , x, z) and a prospective member i with input gpk = (P, Q, P̄ , N, g, g1, g2, y, y2). It
proceeds as follows:

= m1. Member i picks random m ∈R ZQ, computes Ji g1 mod P and sends Ji to the group
manager.

2. The group manager picks random a, b ∈R ZQ and sends (a, b) to i.

3. Member i computes Ii = Ja b mod P and ui = am+b mod Q and sends to group manager i g1

Ii together with a proof πi computed as

NIZKPoK ui : Ii = g1
ui mod Q .

4. The group manager proceeds if Ii = Ji
ag1
b mod P and πi is correct. The group manager

GM picks k ∈R ZQ and computes ri = Iig−k mod P and checks whether ri < P −√
2λ2+1 P . If ri does not meet this requirement, the group manager repeats this step until
a suitable ri is found. Finally, the group manager computes si = k − xri mod Q and
sends (ri, si) to i as a membership certificate.

5. Member i verifies that Ii = riyri gsi mod P , and if so stores gsk [i] = (gpk , ri, si, Ii, ui) as
its secret signing key.

Federal Office for Information Security 132

6. Group Signatures in the Discrete Logarithm Setting

6. The group manager sets reg [i] = (Ii, πi, ri, si, transi) where transi is the communication
transcript.

Note that (ri, si) in the above Join protocol is a modified Nyberg-Rueppel signature [154] on
Ii under the group manager’s public key. The above join protocol should be performed over a
secure channel in order to prevent leakage of the pair (ri, si) which is sent in clear to member i.
Furthermore, the communication transcripts transi that the group manager stores in reg are
assumed to be authenticated by i in a way that any publication of transi uniquely identifies i
who participated in the join protocol. These assumptions can be realized using PKI in which
candidate members have certified private/public key pairs. That is i can sign the transcript
using those keys.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , ri, si, ui) of member i, where gpk = P , N, g, g1, g2, y, y2), and a message (P, Q, ¯

m ∈ {0, 1}∗, and proceeds as follows:

1. Pick random l, l ' ∈R ZQ and compute

ll ll −1 l lT1 = Iiy mod P, T2 = g mod P, T3 = r y mod P, T4 = g mod P. 2 2 i 2 2

2. Pick a random generator χ of F.

3. Pick two generators γ, β of E provably at random.

, 2κ/2+1+λ1].4. Pick random s2 ∈R [−2κ/2+1+λ1

= χri ˆ = γri βs25. Compute T5 mod P and T6 mod N .

6. Compute signature of knowledge S as ⎡
 ⎤
 ui ll ll T1 = g y mod P and T2 = g mod P1 2 2
−1 l lT3 = r y mod P and T4 = g mod Pi 2 2

ui, l ' , l, ri, si, s2, t : T5 = χri mod P̂ and T6 = γri βs2 mod N

T1T3 = yri gsi yt mod P and T2T4 = gt mod P2 √ √ 2

ri ∈ [−2λ2 c, c + 2λ2 c]

√

⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎦

SoK
 m

for c = P − 2λ2+1 P .

7. Output group signature σ = (S, T1, T2, T3, T4, T5, T6, χ, γ, β).

Note that (T3, T4) and (T1, T2) are ElGamal ciphertexts of ri and Ii, respectively, under the
secret opening key of the group manager and thus can be used by the group manager to
identify the signer. T5 and T6 can be seen as commitments to ri. Together with the SoK
signature S, these commitments prove that the signer possesses a valid certificate issued by
the group manager. Note that picking γ and β provably at random can be achieved by using
a secure pseudo random number generator and disclosing the seed resulting in the two values.
Although we do not give details about the construction of S, we notice that as described in [12]

Federal Office for Information Security 133

6. Group Signatures in the Discrete Logarithm Setting

the actual length of S is proportional to the number of bits in the output of the hash function
used in its computation.

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (P, Q, P̄ , N, g, g1, g2, y, y2), a message m, and a candidate group signature σ,
and proceeds as follows:

1. Parse σ as (S, T1, T2, T3, T4, T5, T6, χ, γ, β).

2. If S is a valid SoK signature on message m then output 1; otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the group manager’s secret
key gmsk = (gpk , x, z), where gpk = P , N, g, g1, g2, y, y2), message m, group signature (P, Q, ¯

σ = (S, T1, T2, T3, T4, T5, T6, χ, γ, β), and registration list reg and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Decrypt (T1, T2) by Ii = T1/T2
x mod P .

3. Find i for which reg [i] = (Ii, πi, ri, si, transi).

x
4. Compute J as NIZKPoK x : T1I
−1 = T x mod P and y2 = g mod P .i 2 2

5. Output (i, τ) where τ = (Ii, ri, si, transi, J).

Judgement procedure. The judgement algorithm Judge takes as input the group public key
gpk = (P, Q, P̄ , N, g, g1, g2, y, y2), message m, signature σ, identity i, and proof τ , and proceeds
as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse τ as (Ii, ri, si, transi, J).

3. If all of the following holds then output 1; otherwise output 0:

• J is a valid NIZKPoK proof

• Ii is included in transi.

• transi is authenticated by i

• (ri, si) satisfies Ii = riyri gsi mod P

The validity of the NIZKPoK proof J ensures, that the group manager correctly decrypted
the claimed value Ii from the ElGamal ciphertext (T1, T2). The proof that Ii identifies i stems
from the authenticity of transi in combination with the validity of the membership certificate
(ri, si).

Federal Office for Information Security 134

6. Group Signatures in the Discrete Logarithm Setting

6.1.2. Security of the AM Scheme

Ateniese and Medeiros [12] did not provide a security proof of their scheme. They do, however,
provide arguments, why their scheme remains secure in the Random Oracle Model. We will
discuss the security of the AM scheme in the light of our definitions.

Anonymity. The AM scheme seems to satisfy the insider anonymity notion from Definition 2.3.
The knowledge of secret signing keys gsk [i] of all group members would not help the adversary
A in distinguishing, whether the challenge signature σ∗ = (S, T1, T2, T3, T4, T5, T6, χ, γ, β) has
been produced by signer i0 or signer i1. The corresponding SoK signature S has computational
ZK property, i.e., it does not reveal any information about gsk [ib]. (T3, T4) and (T1, T2) are
ElGamal encryptions of ri and Ii, respectively, under the group manager’s secret opening key.
As the adversary does not know gmsk , it cannot decide if the signature is produced by i0 or
i1 as the ElGamal-Encryption is IND-CPA secure under the DDH assumption. T5, T6 and
T1T3 are commitments to ri in different groups. As commitments have at least computational
hiding property it is infeasible for the adversary to extract the value of ri from any of the
commitments. Values χ, γ, and β are chosen at random and contain no information about
the signer. It follows that the adversary is not able to distinguish who signed the challenge
signature.
Note that the AM scheme cannot satisfy the (stronger) full anonymity notion from Defini­

tion 2.4 because the group signature contains values χ and T5 = χri . Hence, a full anonymity
adversary in possession of secret signing keys can simply check whether T5 = χr0 or T5 = χr1 ,
and thus identify the signer.

Traceability. The AM scheme is dynamic and cannot satisfy full traceability as mentioned in
Section 2.2.4. The AM scheme, however, seems to offer insider traceability from Definition 2.18.
Since the group manager remains honest the adversary A has to come up with the SoK signature
S∗ which is valid for (T1, T2, T3, T4, T5, T6, χ, γ, β) and message m, while the decryption of the
ElGamal ciphertext (T1, T2) by the group manager results in some Ii for which no member
exists in reg . The SoK soundness property, which holds in the Random Oracle Model, ensures
that any successful verification of the group signature implies that (T1, T2, T3, T4, T5, T6, χ, γ, β)
satisfy the required relations. Moreover, the PoK property of S∗ guarantees that in this case A
knows (ri, si), which is a valid modified Nyberg-Rueppel signature under the group manager’s
secret issuing key. This is infeasible because A does not learn gmsk and the modified Nyberg-
Rueppel signature scheme is unforgeable under the DL assumption in the Random Oracle Model
and the Generic Group Model as proven in [13]. Hence, the opening algorithm will likely output
(i, τ) that will be accepted by the judgement algorithm that checks the validity of the modified
Nyberg-Rueppel signature and verifies the authenticity of transi, signed by the i.

Non-Frameability. The AM scheme seems to satisfy the notion of full non-frameability from
Definition 2.21. The reason is that the algorithm Judge first ensures that (m, σ∗) can be
successfully verified. As discussed above this means that σ has been produced with knowledge
of (ri, si, ui). Although the adversary A may learn (ri, si) by acting as the group manager in the
join protocol, it is hard for A to actually obtain ui due to the hardness of the DL problem in Z∗

Q

Federal Office for Information Security 135

6. Group Signatures in the Discrete Logarithm Setting

and the ZK property of the NIZKPoK proof in the join protocol and the SoK signature in the
signing algorithm. A could still generate (m ∗, σ∗) on behalf of some corrupted group member
and attempt to provide a proof τ = (Ii, ri, si, transi, J) that this pair opens to some honest
member i. This is, however, prevented by the soundness property of the NIZKPoK J , which
holds in the Random Oracle Model, and the assumption that each transi is authenticated by
the corresponding group member i.

6.2. The Furukawa-Yonezawa Scheme

In this section we present the group signature scheme proposed by Furukawa and Yonezawa [94].
This scheme, which we refer to as FY, is dynamic with distributed authorities and offers veri­
fiable opening. It thus belongs to the class of schemes that were defined in Section 2.4. In the
following we provide the description of the FY scheme and discuss its security.

6.2.1. The FY Scheme

The FY group signature scheme is dynamic with distributed authorities and offers verifiable
opening. It uses the DL setting and has one security parameters κ. The FY scheme assumes
the existence of a public key infrastructure.
In the following we specify the core algorithms and protocols of the FY scheme. Our de­

scription follows the specification from [94], except that we also provide specification of the
judgement procedure that has been omitted in the original work.

Key generation. The key generation algorithm GKg on input κ performs the following steps:

¯1. Pick sufficiently large primes P , Q, P̄ such that P = k1Q + 1 and P = k2P + 1 for some
k1, k2 ∈ N. Let GQ be a subgroup of ZP

∗ , of order Q and let GP be a subgroup of Z
P
∗
¯, of

order P .

2. Choose g, h, f ∈R GQ and G, H ∈R Gp.

3. Pick random v ∈R ZQ, compute y = hv mod P .

4. Pick random ω ∈R ZQ, compute e = gω mod P .

5. Output (gpk , ik , reg , ok) such that:

• group public key gpk = (e, y, P, Q, P̄ , g, h, f, G, H)

• secret issuing key ik = (gpk , v)

• reg is the initially empty registration list

• secret opening key ok = (gpk , ω).

Join protocol. The join protocol Join is executed between the group issuer with input ik =
(gpk , v) and a prospective member i with input gpk = (e, y, P, Q, P̄ , g, h, f, G, H). It proceeds
as follows:

Federal Office for Information Security 136

6. Group Signatures in the Discrete Logarithm Setting

1. Member i picks random xi ∈R ZQ, computes Ii = gxi mod P , generates the non-interactive
zero knowledge proof of knowledge πi as

NIZKPoK xi : Ii = gxi mod P

and sends (Ii, πi) to the issuer.

2. The issuer checks if Ii and πi are valid. He picks random ρ ∈R ZQ and computes ri =
Iih

ρ mod P and ξi = ρ − riv mod Q. The issuer sends (ri, ξi) to i as a membership
certificate.

xi hξi3. Member i checks whether (ri, ξi) satisfies ri = yri g mod P and ri ∈ [0, P − 1] and if
so stores gsk [i] = (gpk , ri, ξi, xi,) as its secret signing key.

4. The issuer adds (Ii, πi, ri, ξi, transi) to the registration list reg where transi is the com­
munication transcript.

Note that (ri, ξi) in the above Join protocol can be seen as a modified Nyberg-Rueppel signature
[154] on Ii under the issuer’s public key. The communication transcripts transi that the issuer
stores in reg are assumed to be authenticated by i in a way that any publication of transi
uniquely identifies i who participated in the join protocol. These assumptions can be realized
using PKI in which candidate members have certified private/public key pairs. That is i can
sign the transcript using those keys.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , ri, ξi, xi) of member i, where gpk = P , g, h, f, G, H), and a message (e, y, P, Q, ¯

m ∈ {0, 1}∗, and proceeds as follows:

τ −1 τ1. Pick random τ ∈R ZQ and compute T1 = g mod P and T2 = ri e mod P .

ri fα2. Pick random α ∈R ZQ and compute T3 = y mod P .

= Gri Hβ ¯3. Pick random β ∈R ZP and compute T4 mod P .

4. Compute signature of knowledge S as ⎡ ⎤
τ −1 τ= g mod P and = r e mod PT1 T2 i

SoK ⎣ ri, ξi, xi, τ, α, β : T3 = yri fα mod P and T4 = Gri Hβ mod P̄ ⎦ m .
−xi h−ξi eτT2T3 = fαg mod P and ri ∈ [0, P − 1]

5. Output group signature σ = (S, T1, T2, T3, T4).

Note that (T1, T2) is an ElGamal encryption of ri and T3 and T4 can be seen as Pedersen
commitments [159] of ri. Note that the actual length of S is proportional to the number of bits
in the output of the hash function used in its computation (akin to [12]).

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (e, y, P, Q, P̄ , g, h, f, G, H), a message m, and a candidate group signature σ,
and proceeds as follow:

Federal Office for Information Security 137

6. Group Signatures in the Discrete Logarithm Setting

1. Parse σ as (S, T1, T2, T3, T4).

2. If S is a valid SoK signature on message m then output 1; otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the secret opening key ok ,
message m, group signature σ, and registration list reg and proceeds as follows:

1. Parse σ as (S, T1, T2, T3, T4).

2. Decrypt ri = T1
ω/T2 mod P .

3. Find i for which reg [i] = (Ii, πi, ri, ξi, transi).

T ω −1
4. Compute J as NIZKPoK ω : 1 = ri T2 mod P .

5. Output (i, τ) where τ = ((Ii, πi, ri, ξi, transi), J).

Judgement procedure. The judgement algorithm Judge takes as input the group public key
gpk = (e, y, P, Q, P̄ , g, h, f, G, H), message m, signature σ, identity i, and proof τ , and proceeds
as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse τ as ((Ii, πi, ri, ξi, transi), J).

3. If all of the following holds then output 1; otherwise output 0:

• J is a valid NIZKPoK proof

• ri is included in transi

• transi is authenticated by i

• (ri, ξi) satisfies ri = yri Iihξi and ri ∈ [0, P − 1].

The validity of the NIZKPoK proof J ensures, that the opener correctly decrypted the claimed
value ri from the ElGamal ciphertext (T1, T2). The proof that ri identifies i stems from the the
authenticity of transi in combination with properties of (ri, ξi).

6.2.2. Security of the FY Scheme

Furukawa and Yonezawa [94] proved their scheme to possess several security properties, namely
membership manager invulnerability, tracing manager invulnerability and member invulnerabil­
ity. These notions roughly correspond to our definitions of insider traceability, full anonymity
and full non-frameability for schemes with distributed authorities from Section 2.4. In the
following we revisit the security of the FY scheme in the light of our definitions.

Anonymity. The FY scheme seems to offer full anonymity from Definition 2.25 in the Ran­
dom Oracle Model and the Generic Group Model [170]. The latter is a restricted model of

Federal Office for Information Security 138

6. Group Signatures in the Discrete Logarithm Setting

computation that abstracts away any concrete representation of group elements, meaning that
group operations are performed using respective calls to some black-box oracle, which repre­
sents the group operation procedure,. The knowledge of secret signing keys gsk [i] of all group
members would not help the adversary A in distinguishing, whether the challenge signature
σ∗ = (S, T1, T2, T3, T4) has been produced by signer i0 or signer i1, since the corresponding SoK
signature has statistical ZK property, i.e., it does not reveal any information about gsk [ib].
Furthermore, if gsk [i0] and gsk [i1] are known to A, then distinguishing which of them has
been used to compute T1, T2, T3, T4 and S remains hard. T3 and T4 are both Pedersen com­
mitments [159] having perfect hiding property. Thus, it is impossible for A to decide which ri
has been committed. By construction, the challenge signature contains an ElGamal encryption
of ri with a random value τ and a signature of knowledge on τ . Such a pair, consisting of the
ciphertext and signature, can be regarded as a signed ElGamal encryption scheme, which was
proven to be IND-CCA secure by Schnorr and Jakobsson [167]. Since an adversary against the
full anonymity of the FY scheme can be used to break the IND-CCA security of the signed
ElGamal encryption scheme, distinguishing whether the challenge signature has been produced
by member i0 or member i1 is hard.

Traceability. The FY scheme is dynamic and cannot satisfy full traceability as mentioned
in Section 2.2.4. The FY scheme, however, seems to guarantee insider traceability from Def­
inition 2.26 under the DL assumption in the Random Oracle Model and the Generic Group
Model [170]. Since the opener remains honest the adversary A has to come up with the SoK
signature S∗ which is valid for (T1, T2, T3, T4) and message m, while the decryption of the ElGa­
mal ciphertext (T1, T2) by the opener results in some ri for which no member exists in reg . The
SoK soundness property ensures that any successful verification of the group signature implies
that (T1, T2, T3, T4) satisfy the required relations. Moreover, the PoK property of S∗ guaran­
tees that in this case A knows (ri, ξi, xi) such that (ri, ξi) is a valid modified Nyberg-Rueppel
signature under the issuing key ik . This is infeasible to forge because A never gets ik and the
modified Nyberg-Rueppel signature scheme is proven to be UNF secure under the above men­
tioned assumptions in [13]. Hence, the opening algorithm will likely output (i, τ) that will be
accepted by the judgement algorithm that checks the validity of the modified Nyberg-Rueppel
signature and verifies the authenticity of transi, signed by i.

Non-Frameability. The FY scheme is likely to provide the notion of full non-frameability
from Definition 2.28 in the Random Oracle Model under the DL assumption. The reason is that
the algorithm Judge first ensures that (m, σ) can be successfully verified. As discussed above
this means that σ has been produced with knowledge of (ri, ξi, xi). Although the adversary A
may learn (ri, ξi) by acting as the group manager in the join protocol, it is hard for A to actually
obtain xi due to the hardness of the DL problem in ZQ and the ZK property of the NIZKPoK
proofs in the join protocol and the signature generation. A could still generate (m ∗, σ∗) on behalf
of some corrupted group member and attempt to provide a proof τ = ((Ii, πi, ri, ξi, transi), J)
that this pair opens to some honest member i. This is, however, prevented by the soundness
property of the NIZKPoK J and the assumption that each transi is authenticated by the
identified user.

Federal Office for Information Security 139

6. Group Signatures in the Discrete Logarithm Setting

6.2.3. Approach to Distribute Join and Open Procedures

Furukawa and Yonezawa [94] further mention that computations performed by the issuer and
the opener can be carried out in a distributed fashion. That is, multiple issuers and openers
can be involved such that neither of them needs to be fully trusted to perform its respective
tasks. In the following we highlight the intuition of this approach, which can be realized using
threshold secret sharing techniques introduced by Pedersen [158].
Let ik be the secret issuer key and ok the secret opener key generated by the GKg algorithm.

The issuer key ik is distributed into n elements ik 1, . . . , ikn satisfying v = ik 1 + · · · + ikn and
each key (gpk , ik i) is given to one of the n issuers. Similarly the opener key ok is distributed
into n elements ok 1, . . . , okn satisfying ω = ok 1 + · · · + okn and each key (gpk , ok j) is given
to one of the n openers. In the Join protocol, each issuer j ∈ [1, n] computes ri = Iiht and
ξ ' = kj − ri · ik j where t and kj are computed in a distributed way such that they satisfy j

the equation t = hk1+···+kn . The joining member i obtains its membership certificate (ri, ξi) by
computing ξi = ξ1

' +· · ·+ξn
' . In the Open algorithm, each opener j ∈ [1, n] computes T1,j = T1

okj

and the entire decryption of ri can be completed by computing ri = (T1,1 · · · T1,n)/T2 mod P .

Federal Office for Information Security 140

7.	 Group Signatures in the Setting of
Bilinear Maps

Group signature schemes in the setting of bilinear maps (pairings) are usually more efficient
than schemes in the RSA and DL settings. First constructions based on pairings were discov­
ered independently by Boneh, Boyen, and Shacham [36] and by Camenisch and Lysyanskaya
[57] under different hardness assumptions. The scheme from [36] relies on Linear encryption
techniques. Its basic version is static but can be extended towards the dynamic setting and the
additional revocation mechanism. However, this scheme offers CPA-full anonymity only. The
scheme from [57] is dynamic and relies on Cramer-Shoup encryption [77] in the target group
to suit the setting of bilinear maps. These two schemes influenced many other pairing-based
constructions. Nguyen and Safavi-Naini [151] introduced a dynamic scheme based on ElGamal
encryption in the target group. They explicitly deployed user PKI to obtain verifiable opening
(akin to the model from [25]). Another pairing-based scheme with distributed authorities was
introduced by Furukawa and Imai [93] by applying ElGamal encryption in the input group,
which can be used with special types of bilinear groups. Kiayias and Yung [120] came up
with a construction of a dynamic scheme in a mixed setting that used bilinear groups and
RSA parameters, focusing explicitly on the security of concurrently executed join procedures.
Delerablée and Pointcheval [81] came up with a dynamic scheme using Double ElGamal en­
cryption techniques, which has comparable security to the scheme from [120] but without the
additional RSA parameters. Boyen and Waters [39, 40] proposed dynamic group signature
schemes using (composite) bilinear groups of unknown order, offering CPA-full anonymity in
the standard model. Another dynamic group signature scheme in the standard model with
distributed authorities and verifiable opening is due to Groth [105]. More recently, Bichsel et
al. [31] introduced a dynamic group signature scheme, which unlike previous schemes does
not use the “sign-and-encrypt-and-prove” paradigm, leading to better efficiency. Their scheme
requires user PKI and achieves verifiable opening with a single group manager.
In the following we focus on three group signature schemes in the setting of bilinear maps.

We first detail the design of the two initial constructions by Boneh, Boyen, and Shacham [36]
and by Camenisch and Lysyanskaya [57], and then describe the more recent scheme by Bichsel
et al. [31].

7.1.	 The Boneh-Boyen-Shacham Scheme

In this section we present the group signature scheme proposed by Boneh, Boyen, and Shacham [36].
This scheme, which we refer to as BBS, is static and comes with distributed authorities for
issuing the secret signing keys to prospective group members and for opening their group sig­

141

7. Group Signatures in the Setting of Bilinear Maps

natures. The BBS scheme can thus be seen as a representative of group signature schemes that
we defined in Section 2.4. Furthermore, the BBS scheme can be extended in two ways: (1) to
support revocation of group members, leading to a partially dynamic scheme, where existing
members can be revoked but no new members added, and (2) to support a fully dynamic be­
havior according to our definitions in Section 2.2. From an historical point of view, BBS was
amongst the first group signature schemes based on bilinear maps. In the following we describe
algorithms and security of the BBS scheme and its extensions.

7.1.1. The BBS Scheme

The BBS group signature scheme has a single security parameter κ ∈ N and uses bilinear groups
G1 = (g1), G2 = (g2), and GT of prime order Q with |Q| = κ, a bilinear map e : G1 ×G2 → GT ,
and an efficiently computable homomorphism ψ from G2 to G1 with ψ(g2) = g1.
In the following we specify the core algorithms and protocols of the BBS scheme. Our

description follows the specification from [36], except that we apply the notation used for group
signature schemes with distributed authorities from Section 2.4 (adopted for static schemes)
while the original description omitted an explicit denotation of the issuing authority.

Key generation. The key generation algorithm GKg on input 1κ and the number of groups
members n performs the following steps:

1. Select h ∈R G1 \ {1G1 } and ξ1, ξ2 ∈R Z∗
Q.

ξ1 ξ22. Set u, v ∈ G1 such that u = v = h.

3. Select γ ∈R Z∗
Q and set w = g2

γ .

4. Using γ, generate for each user i, 1 ≤ i ≤ n, an SDH tuple (Ai, xi) with xi ∈R ZQ
∗ and

1/(γ+xi)Ai = g1 .

5. Output (gpk , ik , gsk , reg , ok) such that:

• group public key gpk = (Q, G1, G2, g1, g2, e, h, u, v, w)

• secret issuing key ik = (gpk , γ)

• secret opening key ok = (gpk , ξ1, ξ2)

• n-vector of secret signing keys of member i: gsk [i] = (gpk , Ai, xi)

• n-vector registration list with reg [i] = (Ai) for each member i.

It is assumed that key generation is performed in a trusted way. In particular, this means
that the elements h, ξ1, ξ2, γ are chosen independently at random from G1 \ {1G1 } respectively
Z∗
Q and, more importantly, γ is not known to the opener. This assumption is necessary to

ensure trust into the group public key gpk .
As mentioned in Section 2.4, the secret issuing key ik can safely be erased in this fully static

version of the BBS scheme; it is not needed until it comes to user revocation as we will see
later.

Federal Office for Information Security 142

7. Group Signatures in the Setting of Bilinear Maps

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , Ai, xi) of member i, where gpk = (Q, G1, G2, g1, g2, e, h, u, v, w), and a message
m ∈ {0, 1}∗, and proceeds as follows:

1. Select α, β ∈R ZQ and compute:

T1 = u α , T2 = v β , T3 = Aih
α+β .

2. Compute S as a signature of knowledge ⎡ ⎤
T1 = uα and T2 = vβ

SoK ⎣ α, β, xi : e(T3, g2)
xi e(h, w)−α−β e(h, g2)−xiα−xiβ = e(g1, g2)/e(T3, w) ⎦ m .

T xi T xi 1 u
−xiα = 1 and 2 v

−xiβ = 1

3. Output group signature σ = (S, T1, T2, T3).

In the above signature generation algorithm (T1, T2, T3) is a Linear encryption of Ai under
the public key (u, v, h), decryptable using the according private key (ξ1, ξ2) whose IND-CPA
security is based on the DLIN assumption. The SoK signature thus proves that the signer is in

1/(γ+xi)possession of a pair (Ai, xi) such that Ai = g1 ; thus, proving that the signer has a valid
signing key gsk [i] and that σ can be opened by the group manager, who can decrypt Ai from
the ciphertext.

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (Q, G1, G2, g1, g2, e, h, u, v, w), a message m, and a candidate group signature
σ and proceeds as follows:

1. Parse σ as (S, T1, T2, T3).

2. If S is a valid SoK signature on message m then output 1; otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the secret opening key
ok = (gpk , ξ1, ξ2) where gpk = (Q, G1, G2, g1, g2, e, h, u, v, w), a message m, a group signature
σ, and the registration list reg and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse σ as (S, T1, T2, T3).

T ξ23. Compute Ai = T3/(T1
ξ1

2).

4. Find i for which reg [i] = (Ai), if no such i exists, output 0.

5. Output i.

Federal Office for Information Security 143

7. Group Signatures in the Setting of Bilinear Maps

7.1.2. Security of the BBS Scheme

Boneh, Boyen, and Shacham [36] prove that their scheme satisfies the notions of CPA-full
anonymity, insider traceability, and an intermediate flavor between our insider and full non­
frameability. In the following we discuss security of the BBS scheme in the light of our security
notions from Section 2.4.

Anonymity. The BBS scheme does not satisfy the full anonymity notion from Definition 2.4,
but the relaxed notion of CPA-full anonymity from Remark 2.1.3. The latter is similar to full
anonymity except that the adversary is not allowed to query the opening oracle (neither in the
first nor in the second attack stage). Boneh, Boyen, and Shacham [36] prove this property for
their scheme in the Random Oracle Model under the DLIN assumption (cf. Definition 3.10).
Their proof shows, how to use a successful CPA-full anonymity adversary to break the IND-CPA
security of the Linear Encryption scheme, whose security in turn requires the DLIN assumption.

Traceability. Boneh, Boyen, and Shacham [36] also proved that their scheme satisfies the full
traceability requirement of Bellare, Micciancio, and Warinschi [22], which slightly differs from
our notion (cf. Remark 2.1.4), where the adversary receives the secret issuing key ik . In the
static BBS scheme where revocation is not handled it is however possible to safely erase ik at
the end of the key generation procedure. Therefore, this version of BBS would also satisfy our
notion of full traceability under the q-SDH assumption in (G1, G2) from Definition 3.9.

Non-Frameability. The BBS scheme seems to offer full non-frameability from Definition 2.28
under the q-SDH assumption in (G1, G2) (cf. Definition 3.9). The reason is similar to the case
of traceability of the BBS scheme. Indeed, the erasure of the issuing key ik at the end of the
key generation procedure is sufficient for full non-frameability of the static BBS scheme. The
impact on non-frameability of the BBS scheme with revocation support, where ik cannot be
erased as it is needed for revocation purposes, is discussed in the next section.

7.1.3. Extensions of the BBS Scheme

In addition to their basic scheme, Boneh, Boyen, and Shacham [36] introduce an extension
to address revocation of users, resulting in a partially dynamic scheme where members can
only be removed from the group (but not added). We highlight these modifications using the
terminology from Section 2.2.2.

Key generation. The key generation algorithm GKg publishes the initially empty update
information upd . Additionally, the secret issuing key has to be stored for later revocation
operations and cannot be erased anymore as in the fully static scheme.

Revocation procedure. The new revocation algorithm Revoke of the BBS scheme proceeds
1/(γ+xi)as follows. In order to revoke a member i, the group manager computes A∗

i = g2 ∈ G2

(note that Ai = ψ(A∗
i)) and adds the tuple (A∗

i , xi) to upd . He also computes the new public
1/(γ+xi) 1/(γ+xi)key gpk = (Q, G1, G2, ĝ1, ĝ2, e, h, u, v, ŵ) where ĝ1 = g1 = ψ(Ai

∗), ĝ2 = g2 = A∗
i , and

Federal Office for Information Security 144

7. Group Signatures in the Setting of Bilinear Maps

ŵ = (ĝ2)γ = g2(A∗
i)

−xi . Note that the new public key can also be computed by anyone knowing
the old one and upd , i.e., it suffices to distribute upd .

Update procedure. The new update algorithm UpdM of the BBS scheme proceeds as follows.
An unrevoked group member i in possession of (Ai, xi) obtains the recent changes from upd
(consisting of entries of the form (Ar, xr) for a revoked user r). For each entry (Ar, xr) member

1/(xi−xr)i computes Â = ψ(Ar
∗)1/(xi−xr)/Ar and sets her new private key to be (Âi, xi) which

satisfies, as required,
γ+xiγ+xi (γ+xi)+(xi−xr)

(Âi)
γ+xi = ψ(A ∗

r)
xi−xr /A r

xi−xr = ψ(A ∗
r) xi−xr /g1

1/(xi−xr) = ψ(A ∗
r) = ĝ1.

A revoked user cannot construct a private key for the new public key unless the user can
break the SDH assumption. In brief, given an SDH challenge one can easily generate a public

1/(γr +xr)key tuple (Q, G1, G2, ĝ1, ĝ2, e, h, u, v, ŵ) along with the private key (g1 , xr) for a revoked
user r. An algorithm able to forge signatures given these two tuples can be used to solve the
SDH challenge.
Revocation extension for BBS, however, seems to reduce its security to only insider traceabil­

ity (cf. Definition 2.26) and insider non-frameability (cf. Definition 2.27), since the issuing key
ik cannot be erased anymore after the key generation. The adversary in the full traceability
game is thus able to compute a new signing key (A∗

i , x i
∗) and generate signatures that verify but

open to some user i for which no registration entry reg [i] exists. In the full non-frameability
game the adversary has additionally write access to reg and hence can easily generate a new
signing key (A∗

i , x i
∗) for an existing member i∗ and overwrite reg [i∗] with (A∗

i). That way, the
adversary is able to output a valid signature that opens to an existing member i∗ . To prevent
the latter attack, one could additionally store as part of the registration list reg [i] the au­
thenticated communication transcript transi of the protocol Join, in which member i receives
its secret signing key gsk [i] = (Ai, xi). Such authentication of transcripts could be realized
using a PKI. The full non-frameability adversary would be unable to produce an authenticated
transcript without knowledge of xi.

The second extension to the BBS scheme described in [36] introduces protocol Join to handle
the admission of new group members, which makes the scheme (fully) dynamic. Roughly, the
secret signing key gsk [i] that member i obtains in the joining protocol with the issuer consists

γ+xi hyiof a triple (Ai, xi, yi) satisfying the equation Ai 1 = g1 for some h1 ∈ G1, which is part
of the group public key gpk . Of crucial importance for the security of the dynamic scheme is,
that yi is chosen by the group member i and remains unknown to the issuer due to the use of
appropriate ZKPoK proofs on the member’s side. In fact, security properties of the basic BBS
scheme are preserved by this dynamic variant. In particular, its full non-frameability holds
only in combination with authenticated transcripts and a user PKI.

7.2. The Camenisch-Lysyanskaya Scheme

In this section we present the group signature scheme proposed by Camenisch and Lysyan­
skaya [57]. This scheme, which we refer to as CL, is dynamic and comes with distributed

Federal Office for Information Security 145

7. Group Signatures in the Setting of Bilinear Maps

authorities for issuing the secret signing keys to prospective group members and for opening
their group signatures. The CL scheme can thus be seen as a representative of group signature
schemes, defined in Section 2.4. Historically, the CL scheme, along with the BBS scheme, was
one of the first group signature schemes in the setting of bilinear maps.

7.2.1. The CL Scheme

The CL group signature scheme is a dynamic scheme with distributed authorities. It has a
single security parameter κ ∈ N and uses cyclic groups G = (g) and GT = (gT) of prime order
Q with |Q| = κ, a bilinear map e : G × G → GT , and the generator gT = e(g, g). Additionally,
a collision resistant hash function Hash : {0, 1}∗ → ZQ is used and modeled as a random oracle
in the proof of security.
In the following we specify the core algorithms and protocols of the CL scheme. Our descrip­

tion follows the specification from [57].

Key generation. The key generation algorithm GKg on input 1κ performs the following steps:

x1. Select x ∈R ZQ, y ∈R ZQ and set X = g , Y = gT
y .

x1 x3 x5hx22. Select h ∈R GT \ {1GT }, x1, . . . , x5 ∈R ZQ and set y1 = g , y2 = g hx4 , and y3 = g .T T T

3. Output (gpk , ik , ok , reg) such that:

• group public key gpk = (Q, G, GT , g, gT , e, X, Y, h, y1, y2, y3)

• secret issuing key ik = (gpk , x, y)

• secret opening key ok = (gpk , x1, . . . , x5)

• registration list reg is initially empty.

It is assumed that key generation is performed in a trusted way. In particular, this means
that the elements x, y, h, x1, . . . , x5 are chosen independently at random from ZQ respectively
GT \ {1GT }. This assumption is necessary to ensure trust into the group public key gpk .
Note that the tuple (h, y1, y2, y3) is a public key of the Cramer-Shoup encryption scheme [77]

over the group GT and (x1, . . . , x5) is the corresponding private key. As the Cramer-Shoup
scheme is secure under the DDH assumption it cannot be used over the group G (cf. Section
3.2.3) and thus has to be used over GT instead.

Join protocol. The join protocol Join is executed between the issuer with input ik = (gpk , x, y)
and a prospective member i with input gpk = (Q, G, GT , g, gT , e, X, Y, h, y1, y2, y3). It proceeds
as follows:

1. Member i picks random ki ∈R ZQ, sets Pi,1 = gki and sends Pi,1 authentically to the issuer
together with a proof

ZKPoK ki : Pi,1 = gki .

Federal Office for Information Security 146

� � � �

7. Group Signatures in the Setting of Bilinear Maps

2. The issuer proceeds if Pi,1 ∈ G and the above proof was correct. It picks random r ∈R ZQ,
r y xP rxy computes ai = g , bi = a , and ci = a and sends the membership certificate (ai, bi, ci)i i i,1

back to i.

3. Member i stores gsk [i] = (gpk , ki, ai, bi, ci) as its secret signing key.

4. Finally, the issuer computes Pi,2 = e(Pi,1, g) and sets reg [i] = (Pi,1, Pi,2).

It is assumed, that the join protocol is executed over a secure channel to protect the distribution
of the membership certificate. The (ai, bi, ci) part of the secret signing key gsk [i] represents an
ordinary Camenisch-Lysyanskaya signature on the message ki. This signature scheme was intro­
duced in [57] and its unforgeability property holds under the LRSW assumption (cf. Definition
3.12).

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , ki, ai, bi, ci) of member i, where gpk = (Q, G, GT , g, gT , e, X, Y, h, y1, y2, y3), and
a message m ∈ {0, 1}∗, and proceeds as follows:

1. Select r, r ' ∈R ZQ and compute a blinded version of the certificate as

l l l
σ̃ := (a ri , b

r
i , c ri

r) = (T5, T6, c̃
r) = (T5, T6, T7).

2. Compute Pi,2 = gT
ki = e(Pi,1, g) and encrypt Pi,2 under the group opener’s public key, i.e.,

choose u ∈R ZQ and compute

u u u uHash(T1 T2 T3)T1 = g T2 = hu , , T3 = y T4 = y .T , 1 Pi,2, 2 y3

3. Compute S as a signature of knowledge

υ = hυe(g, T7)
ρ = e(X, T5)e(X, T6)

µ and T1 = gT and T2
SoK µ, ρ, υ : υ µ Hash(T1 T2 T3)

υ m .
= y and = y2yT3 1 gT T4 3

4. Output group signature σ = (S, T1, T2, T3, T4, T5, T6, T7).

In the above signature generation algorithm (T1, T2, T3, T4) is a Cramer-Shoup encryption [77]
of Pi,2 under the group opener’s public key (h, y1, y2, y3). This ciphertext is decryptable using
the private key (x1, . . . , x5). The SoK signature S thus proves that the signer is in possession
of a ki, satisfying the equation Pi,1 = gki ; thus, proving that the signer has a valid signing key
gsk [i] and that σ can be opened by decrypting Pi,2 from the ciphertext.

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (Q, G, GT , g, gT , e, X, Y, h, y1, y2, y3), a message m, and a candidate group
signature σ and proceeds as follows:

1. Parse σ as (S, T1, T2, T3, T4, T5, T6, T7).

Federal Office for Information Security 147

7. Group Signatures in the Setting of Bilinear Maps

2. If	 S is a valid SoK signature on message m and e(T5, Y) = e(g, T6) then output 1;
otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the secret opening key
ok = (gpk , x1, . . . , x5) where gpk = (Q, G, GT , g, gT , e, X, Y, h, y1, y2, y3), a message m, a group
signature σ, and the registration list reg and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse σ as (S, T1, T2, T3, T4, T5, T6, T7).

= T x3+x5H T x43. Compute H = Hash(T1 1 T2 1 T3) and verify that T4 1 2 , otherwise output 0.

T x24. Compute Pi,2 = T3/(T1
x1

2).

5. Find i for which reg [i] = (Pi,1, Pi,2), if no such i exists, output 0.

6. Output i.

7.2.2. Security of the CL Scheme

Camenisch and Lysyanskaya [57] prove security of their scheme using definitions from Bellare,
Micciancio, and Warinschi [22]. Additionally, they show that the interactive protocol underlying
the signature of knowledge is secure. In the following we discuss security of the CL scheme in
the light of our definitions of anonymity, traceability, and non-frameability from Section 2.4.

Anonymity. The CL scheme seems to provide full anonymity guarantees from Definition 2.25
in the Random Oracle Model under the DDH assumption in GT . The knowledge of secret signing
keys gsk [i] of all group members would not help the adversary A in distinguishing, whether

∗	 ∗ ∗the challenge signature σ∗ = (S∗, T 1 , T 2
∗, T 3

∗, T 4
∗, T 5

∗, T 6 , T 7) has been produced by signer i0 or
signer i1, since the corresponding SoK signature has statistical ZK property, i.e. it does not
reveal any information about gsk [ib]. Furthermore, even if gsk [i0] and gsk [i1] are known to A
(which full anonymity implicitly assumes), distinguishing whether these values have been used
to compute T1

∗, T 2
∗, T 3

∗, T 4
∗ is hard under the DDH assumption in GT . As values T5

∗, T 6
∗, T 7

∗ are
blinded, they also do not reveal any information about the membership certificate of ib. Thus,
any adversary breaking full anonymity, can be used to break the IND-CCA security of the
Cramer-Shoup scheme [77], which is known to have this property under the DDH assumption.

Traceability. The CL scheme is dynamic and cannot satisfy full traceability as mentioned
in Section 2.2.5. It, however, seems to offer insider traceability from Definition 2.26 with the
modifications mentioned in Remark 2.4.2. Since the issuer remains honest the adversary A has

∗	 ∗ ∗ ∗to come up with the group signature σ∗ = (S∗, T ∗, T ∗, T , T , T , T ∗, T ∗) on some message m1	 2 3 4 5 6 7

such that the signature is valid but the algorithm Open outputs 0. The ZK property of S∗

ensures that no information about the secret key gsk [i] is leaked and the soundness property
of S∗ guarantees that the signer is in possession of a valid Camenisch-Lysyanskaya signature

Federal Office for Information Security 148

7. Group Signatures in the Setting of Bilinear Maps

(ai, bi, ci), whose unforgeability holds under the LRSW assumption (cf. Definition 3.12). The
soundness property of the SoK signature S∗ implies that, if σ∗ is valid then its components
T1

∗, T 2
∗, T 3

∗, T 4
∗ encrypt Pi∗ ,2.

Non-Frameability. The CL scheme seems to satisfy the notion of full non-frameability from
Definition 2.28. The reason is that the algorithm Open first checks that (m ∗, σ∗) can be suc­
cessfully verified. The PoK property of the SoK signature S∗ (which is part of σ∗) implies
that σ∗ has been produced with the knowledge of ki. Although the adversary A may learn the
membership certificate (ai, bi, ci) of a user i by acting as the group issuer in the join protocol,
it is hard for A to actually obtain ki due to the hardness of the DL problem in G and the ZK
property of the ZKPoK protocol, executed in Step 1 of Join, and of the SoK signatures.

7.3.	 The Bichsel-Camenisch-Neven-Smart-Warinschi
Scheme

In this section we present the group signature scheme proposed by Bichsel, Camenisch, Neven,
Smart, and Warinschi [31]. This scheme, which we refer to as BCNSW, is dynamic with verifi­
able opening and involves a user PKI for potential group members. The BCNSW scheme can
thus be seen as a representative of group signature schemes defined in Section 2.3 employing
the user PKI procedures mentioned in Section 2.3.2. In addition, the BCNSW scheme can be
extended to add verifier-local revocation. Departing from the “sign-and-encrypt-and-prove”
paradigm, the BCNSW scheme allows for the shortest known signature size as well as com­
parably low computation time while keeping a strong security level. In the following we will
describe algorithms and security of the BCNSW scheme. Its extension toward verifier-local
revocation is described separately in Section 8.4.

7.3.1. The BCNSW Scheme

The BCNSW group signature scheme is a dynamic scheme with verifiable opening employing a
user PKI (connected with an unforgeable digital signature scheme Σ = (Kg, Sign, Vrfy) specified
in Section 3.4). It has a single security parameter κ ∈ N and uses bilinear groups G1 = (g1),
G2 = (g2), and GT of prime order Q with |Q| = κ and a bilinear map e : G1 × G2 → GT .
Additionally, two hash functions Hash1, Hash2 : {0, 1}∗ → ZQ are used and modeled as random
oracles in the proof of security. The BCNSW scheme is based on the ordinary Camenisch-
Lysyanskaya signature scheme [57, Scheme A] and especially makes use of the fact that these
signatures are re-randomizable, i.e., given a valid signature (a, b, c) ∈ G3

1 on a message m, the
signature (ar, br r) will also be valid for any r ∈ Z∗ , c Q.
In the following we specify the core algorithms and protocols of the BCNSW scheme. Our

description follows the specification from [31].

Key generation. The key generation algorithm GKg on input 1κ performs the following steps:

x1. Select x ∈R ZQ, y ∈R ZQ and set X = g2 , Y = g2
y .

Federal Office for Information Security 149

� �

7. Group Signatures in the Setting of Bilinear Maps

2. Output (gpk , gmsk , reg) such that:

•	 group public key gpk = (Q, G1, G2, g1, g2, e, X, Y)

•	 group manager’s secret key gmsk = (gpk , x, y)

•	 registration list reg is initially empty.

It is assumed that key generation is performed in a trusted way. In particular, this means that
the elements x, y are chosen independently at random from ZQ. This assumption is necessary
to ensure trust into the group public key gpk .

User key generation. The user key generation algorithm UKg on input 1κ computes and
returns the private/public key pair (usk [i], upk [i]) ←R Kg(1

κ) for the digital signature scheme
Σ where upk [i] is assumed to be certified. As noticed in Section 2.3.2 a user PKI is modeled
here through public (read) access to the list of registered public keys upk .

Join protocol. The join protocol Join is executed between the group manager with input
gmsk = (gpk , x, y) and a prospective member i with input gpk = (Q, G1, G2, g1, g2, e, X, Y) and
an own PKI-certified key pair (usk [i], upk [i]). It proceeds as follows:

1. The group manager chooses a random Ki ∈R ZQ, computes ti = Hash2(Ki), and sends ti
to the member i.

2. Member	 i chooses τi ∈R ZQ, computes si = g1
τi , ri = Xτi , ki = e(g1, ri), as well as

σ̄i ←R Sign(usk [i], ki), sends (si, ri, σ̄i) to the group manager together with a proof

τi = XτiNIZKPoK τi : si = g1 and ri .

3. The group manager verifies the signature using Vrfy(upk [i], e(g1, ri), σ̄i) and computes, if
the signature is valid, zi = sig1

Ki and wi = riXKi , stores (wi, ri, Ki, σ̄i) in reg [i], chooses
ρi y x ρixyρi ∈R ZQ, computes ai = g1 , bi = ai , and ci = ai zi , and sends (ai, bi, ci, Ki) to the

user together with a proof

x ρixy ρi xci = a and ai = g and X = gi zi	 1 2NIZKPoK x, y, ρi : y	 .
Y	 = g2 and 1 = bxi /g1

ρixy

4. Member i computes ξi = τi + Ki mod Q and checks whether ti = Hash2(Ki). She also
verifies e(ai, Y) = e(bi, g2) and, if the verification is successful, stores the entry gsk [i] =
(gpk , ξi, ai, bi, ci).

The (ai, bi, ci) part of the secret signing key represents an ordinary Camenisch-Lysyanskaya
signature on message ξi.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , ξi, ai, bi, ci) of member i, where gpk = (Q, G1, G2, g1, g2, e, X, Y), and a message
m ∈ {0, 1}∗, and proceeds as follows:

Federal Office for Information Security 150

7. Group Signatures in the Setting of Bilinear Maps

1. Re-randomize the signature by choosing r ∈R ZQ and computing T1 = ai
r , T2 = bi

r, and
T3 = ci

r .

2. Compute S as a signature of knowledge 	
e(T3,g2)SoK ξi : = e(T2, X)ξi m . e(T1,X)

3. Output group signature σ = (S, T1, T2, T3).

In the above signature generation algorithm, which leverages the re-randomizability property
of ordinary Camenisch-Lysyanskaya signatures, the SoK signature proves that the signer knows
ξi for which (T1, T2, T3) is a valid signature; thus, proving that the signer has a valid signing
key gsk [i].

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (Q, G1, G2, g1, g2, e, X, Y), a message m, and a candidate group signature σ
and proceeds as follows:

1. Parse σ as (S, T1, T2, T3).

2. If	 e(T1, Y) = e(T2, g2) and S is a valid SoK signature on message m then output 1;
otherwise output 0.

Opening procedure. The opening algorithm Open takes as input the group manager’s secret
key gmsk = (gpk , x, y), a message m, a group signature σ, and the registration list reg , and
proceeds as follows:

1. Parse σ as (S, T1, T2, T3).

2. If GVrfy(gpk , m, σ) = 0 then output (0, ⊥).

3. For all entries reg [i] = (wi, ri, Ki, σ̄i) check whether e(T3, g2) = e(T1, X)e(T2, wi) holds.
If the equation holds for no entry reg [i] then output (0, ⊥), otherwise compute for the
entry reg [i], for which the equation holds, ki = e(g1, ri) and J as the NIZKPoK proof

NIZKPoK wi, Ki : e(T3,g2)
e(T1,X) = e(T2, wi) and ki = e(g1,wi)

e(g1,X)Ki
.

4. Output (i, τ) where τ = (ki, σ̄i, J).

The NIZKPoK proof J ensures that the group manager does not output some uninvolved
member i for which e(T3, g2) = e(T1, X)e(T2, wi) does not hold. By putting out ki, the verifi­
cation of the signature σ̄i on ki becomes possible (with e(g1, ri) = ki).
Note that the opening operation is linear in the number of users in the system, which is

reasonable if the group manager has sufficient resources and the operation is not performed too
often.

Federal Office for Information Security 151

7. Group Signatures in the Setting of Bilinear Maps

Judgement procedure. The judgement algorithm Judge takes as input the group public key
gpk = (Q, G1, G2, g1, g2, e, X, Y), a message m, a group signature σ, an identity i, and proof τ ,
and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Retrieve upk [i].

3. Parse τ as (ki, σ̄i, J).

4. If J is a valid NIZKPoK and Vrfy(upk [i], ki, σ̄i) = 1 then output 1, otherwise output 0.

The judgement procedure ensures the validity of the group signature. Through the additional
verification of the NIZKPoK proof J it obtains confidence that user i has been chosen correctly
from reg in the opening step. The actual identification of the signer i is performed using the
signer’s PKI-certified public key upk [i] and the signature σ̄i. It is implicitly assumed that
identity i points to the candidate public key upk [i] used in this final verification step.

7.3.2. Security of the BCNSW Scheme

Bichsel et al. [31] prove their scheme to be secure according to their definitions of anonymity,
traceability, and non-frameability, which correspond to those we defined in Section 2.3. In the
following, we highlight the intuition for the security of the BCNSW scheme.

Anonymity. The BCNSW scheme satisfies the insider anonymity notion from Section 2.3.4
in the Random Oracle Model under the SDLP assumption in (G1, G2) (cf. Definition 3.13)
and the DDH assumption in G1, which can be assumed only for a bilinear map of Type-2 or
Type-3 (cf. Definition 3.8). If an adversary is able to distinguish the re-randomization of the
ordinary Camenisch-Lysyanskaya signature, then she is also able to solve the DDH problem
in G1. The SoK signature (in the join protocol and the signature generation) has statistical
ZK property and thus keeps ξ and τi secret. Finally, the SDLP assumption ensures that τi
cannot be computed from si and ri. The insider anonymity of the BCNSW scheme can thus
be proven by using the insider anonymity adversary to break the DDH problem in G1. Note
that the BCNSW scheme does not provide full anonymity as user’s secret signing key can be
used to distinguish whether a group signature was computed by that user, i.e. using ξi one can
compute τi.

Traceability. The BCNSW scheme is dynamic and cannot satisfy full traceability as men­
tioned in Section 2.2.5. It, however, offers insider traceability from Definition 2.18 under the
LRSW assumption in (G1, G2) (cf. Definition 3.12). The proof of Bichsel et al. for their no­
tion of traceability naturally applies to our notion of insider traceability. This proof works by
constructing an adversary against the existential unforgeability (cf. Definition 3.16) of ordinary
Camenisch-Lysyanskaya signatures – which rests upon the LRSW assumption – incorporating
an adversary breaking the traceability of BCNSW.

Federal Office for Information Security 152

7. Group Signatures in the Setting of Bilinear Maps

Non-Frameability. The BCNSW scheme satisfies the notion of full non-frameability from
Definition 2.21 under the SDLP assumption in (G1, G2) (cf. Definition 3.13) and the unforge­
ability of the underlying digital signature scheme Σ (cf. Definition 3.16). The soundness of the
SoK part of a group signature prevents its direct forging. As for the anonymity, the secret
member key is protected by the ZK property of the SoK signatures and the SDLP assumption.
Finally, the soundness of the Judge algorithm bases on the soundness of the NIZKPoK proof
issued by Open, which itself is based on the soundness of the SoK part of the group signature.
The requirements of full non-frameability for the BCNSW scheme can be proven by using the
full non-frameability adversary to either forge signatures of Σ or break the SDLP problem in
(G1, G2). The latter problem prevents computation of τi from si and ri, used in step 2 of the
Join protocol.

Federal Office for Information Security 153

8.	 Group Signatures with
Verifier-Local Revocation

So far, we considered group signature schemes, where membership revocation (if any) was per­
formed by the group manager through the distribution of some suitable revocation information
to both the remaining group members and the verifiers (by making update information pub­
lic). For example, membership revocation in the ACJT, TX, and CG schemes (in the RSA
setting) and the pairing-based BBS scheme required from the group manager to update the
group public key and publish some update information, that in turn was used by the remaining
group members to derive their up-to-date secret signing keys. In this chapter we discuss group
signature schemes, where membership revocation is handled in a more flexible way, by requir­
ing that published revocation information is used only by verifiers such that remaining group
members need not to update their secret signing keys. These schemes implement the concept of
verifier-local revocation (VLR) introduced by Boneh and Shacham [38] and then applied
and further extended by Nakanishi and Funabiki [146, 147], Libert and Vergnaud [131], and
Bichsel et al. [31].

8.1.	 Group Signature Schemes with Verifier-Local
Revocation

In this section we define algorithms and security of group signature schemes with VLR prop­
erty. We also consider VLR-schemes, where the life-time of the scheme is split into distinct
time intervals (TVLR-schemes), used in the corresponding signing and verification procedures,
originated in [146]. The different revocation concept used in VLR/TVLR-schemes introduces
some modifications to the syntax of the underlying algorithms and to the definitions of security.

8.1.1. Algorithms of VLR-Schemes and Their Correctness Property

In Definition 8.1 we specify algorithms of a VLR group signature scheme using the same syntax
as introduced by Boneh and Shacham [38]. We focus on static schemes, where the number of
group members is known in advance, and thus, do not explicitly model the joining protocol.
That is, our model adopts definitions of static group signature schemes from Section 2.1 to
address the new property.
The actual VLR property is modeled through the revocation list RL and revocation tokens

grt [i] that the group manager publishes in RL, should a member i be revoked. In contrast to
previous group signature schemes, the (up-to-date) revocation list RL is considered as input

155

8. Group Signatures with Verifier-Local Revocation

to the verification algorithm only. In particular, remaining group members need not to update
their secret signing keys. It is implicitly assumed that the RL is authenticated and distributed
by the group manager.

Definition 8.1 (Group Signature Scheme with Verifier-Local Revocation) A group sig­
nature scheme with verifier-local revocation Γ = (GKg, GSign, GVrfy) consists of three polynomial­
time algorithms:

Key generation. The randomized group key generation algorithm GKg takes as input the
security parameter 1κ , κ ∈ N, and the total number of group members n ∈ N, and
returns a tuple (gpk , RL, grt , gsk), where gpk is the group public key, RL is the initially
empty revocation list, grt is an n-element vector with grt [i] being the revocation token
for member i, and gsk is an n-element vector with gsk [i] being the secret signing key of
member i, 1 ≤ i ≤ n.

Signature generation. The randomized group signing algorithm GSign takes as input a
secret signing key gsk [i] and a message m, and returns a group signature σ.

Signature verification. The deterministic group signature verification algorithm GVrfy takes
as input the group public key gpk , the revocation list RL, a message m, and a candidate
group signature σ for m, and returns either 1 (to indicate that the signature is valid and
the signer is unrevoked) or 0. ♦

Observe that Definition 8.1 does not specify any opening algorithm Open. This does not
mean that group signatures σ produced by VLR-schemes cannot be opened. The actual reason
for omitting Open from the syntax is that any VLR-scheme implements an opening procedure
implicitly by using revocation tokens grt [i] — that are computed by the group manager during
the key generation procedure and remain secret until the revocation of member i takes place.
The opening procedure, which can be implemented for all VLR-schemes, works as follows.

Implicit opening procedure. Let Γ = (GKg, GSign, GVrfy) be a VLR-scheme. The implicit
opening algorithm Open takes as input the group public key gpk , vector of revocation
tokens grt , a message m, and a group signature σ. For all i = 1, . . . , n the algorithm
checks whether

GVrfy(gpk , grt [i], m, σ) = 0,

until it finds first such i, which it then outputs as the identity of the signer. If no such i
is found then the algorithm outputs 0.

The verification check used in the implicit opening procedure identifies the first group member
i for whom the group signature σ becomes invalid. That is, the revocation token grt [i] can
implicitly be used to identify the signer of σ.

Remark 8.1.1 In the implicit opening procedure grt takes the role of the group manager’s
secret key gmsk . Therefore, static VLR schemes do not use gmsk as part of their syntax. In
contrast, dynamic VLR schemes explicitly require gmsk , which in addition to grt would contain
further secrets needed for the admission of group members.

Federal Office for Information Security 156

8. Group Signatures with Verifier-Local Revocation

A group signature scheme with verifier-local revocation Γ should satisfy the following cor­
rectness property, which basically guarantees that group signatures produced by some member
i can be verified successfully if and only if i has not been revoked.

Definition 8.2 (Correctness : VLR) A group signature scheme with verifier-local revoca­
tion Γ = (GKg, GSign, GVrfy) is correct if for all κ, n ∈ N, all (gpk , grt , gsk) ← GKg(1κ, n), all
identities i ∈ [1, n], and all messages m ∈ {0, 1}∗ :

GVrfy(gpk , RL, m, GSign(gsk [i],m)) = 1 ⇐⇒ grt [i] ∈ RL.

♦

The above definitions can be easily extended towards fully dynamic schemes where the group
manager can admit prospective members to the group through the corresponding protocol Join.
In this case, however, the group manager would need an own secret key gmsk , which in addition
to revocation tokens grt would contain further secrets used to issue membership credentials.
Note that modeling techniques from Section 2.2 can be applied to define fully dynamic VLR­
schemes.

8.1.2. Verifier-Local Revocation with Time Intervals (TVLR)

A slightly different flavor of VLR-schemes are group signature schemes where for each group
member i ∈ [1, n] the group manager specifies multiple revocation tokens such that each token
is valid for some specific time interval j ∈ {1, . . . , T }, where T denotes the total number of time
intervals, possibly specified during the initialization procedure. This concept was proposed by
Nakanishi and Funabiki [146]. We refer to such schemes as TVLR-schemes. More precisely, in
TVLR-schemes vector grt is an (n × T)-element vector, in which each element grt [i] contains
T revocation tokens for member i. The actual revocation token for member i at time interval
j ∈ {1, . . . , T } is then denoted by grt [i][j]. Similarly, for each time interval j there is a
corresponding revocation list RLj which is periodically published by the group manager.
The actual motivation for considering TVLR-schemes comes from the observation that in

VLR-schemes (cf. Definition 8.1) revocation of some member i implies publication of the corre­
sponding revocation token grt [i] in the revocation list RL. However, once grt [i] is published, it
becomes possible to link all group signatures σ produced by i, including group signatures that
i generated while being a legitimate (that is, unrevoked) member of the group. In contrast,
TVLR-schemes can potentially prevent linkability of group signatures that were generated by
member i prior to its revocation. This property is commonly called backward unlinkability.
In order to link the process of signature generation and verification to some specific time

interval j the group signing algorithm GSign and verification algorithm GVrfy of a TVLR­
scheme take j as an additional input. Furthermore, should member i be revoked at time
t ∈ [1, T] the group manager is expected to include all revocation tokens grt [i][j] with j ≥ t
into the corresponding revocation lists RLj .
In Definition 8.3 we specify algorithms of a TVLR-scheme by updating the syntax of VLR­

schemes from Definition 8.1 to account for the use of multiple time intervals.

Federal Office for Information Security 157

8. Group Signatures with Verifier-Local Revocation

Definition 8.3 (VLR Group Signature Scheme with Time Intervals) A VLR group sig­
nature scheme with time intervals Γ = (GKg, GSign, GVrfy) consists of three polynomial-time
algorithms:

Key generation. The randomized group key generation algorithm GKg is identical to that of
a VLR-scheme from Definition 8.1, except that it takes the total number of time intervals
T ∈ N as an additional input and its output grt is an (n×T)-element vector with grt [i][j]
being the revocation token for member i at time j ∈ [1, T].

Signature generation. The randomized group signing algorithm GSign takes as input a
secret signing key gsk [i], a time interval j ∈ [1, T], and a message m, and returns a group
signature σ.

Signature verification. The deterministic group signature verification algorithm GVrfy is
identical to that of a VLR-scheme from Definition 8.1, except that it takes a time interval
j ∈ [1, T] as an additional input and uses the corresponding revocation list RLj . ♦

TVLR-schemes admit the same implicit opening procedure Open as VLR-schemes. More
precisely, the group manager views grt as its secret key gmsk and can identify the signer i of
some group signature σ and message m for any given interval j ∈ [1, T] by finding the first
i ∈ [1, n] such that GVrfy(gpk , j, grt [i][j], m, σ) = 0.
The updated syntax of TVLR-schemes leads to the modified definition of correctness where

signatures produced by a group member i remain valid for all time intervals in which i was not
revoked.

Definition 8.4 (Correctness : TVLR) A group signature scheme with verifier-local revo­
cation based on time intervals Γ = (GKg, GSign, GVrfy) is correct if for all κ, n ∈ N, all T ∈ N,
all (gpk , grt , gsk) ← GKg(1κ, n), all identities i ∈ [1, n], all time intervals j ∈ [1, T], and all
messages m ∈ {0, 1}∗ :

GVrfy(gpk , j, RLj , m, GSign(gsk [i], j, m)) = 1 ⇐⇒ grt [i][j] ∈ RLj .

♦

Note that also TVLR-schemes can be made fully dynamic by considering the additional
protocol Join in which the group manager would use its own secret key gmsk to admit new
members to the group.

8.1.3. Adversary Model and Oracles for VLR/TVLR-Schemes

Our formal definitions of security for VLR and TVLR group signature schemes Γ = (GKg, GSign,
GVrfy) will be provided through probabilistic experiments ExptΓ,A(1

κ) as mentioned in Section
1.5. In general, the adversary A will be given access to (a subset of) the following three oracles:

Corruption oracle. The corruption oracle Corrupt(·) takes as input an identity i ∈ [1, n] and
returns the secret signing key gsk [i].

Federal Office for Information Security 158

8. Group Signatures with Verifier-Local Revocation

Signing oracle. The signing oracle GSign(gsk [·], ·, ·) takes as input an identity-interval-message
triple (i, j, m) with i ∈ [1, n], j ∈ [1, T], and returns the output of the group signing
algorithm GSign(gsk [i], j, m). Note that in VLR-schemes the interval j is omitted.

Revocation oracle. The revocation oracle Revoke(grt , ·, ·) takes as input an identity-interval
pair (i, j) with i ∈ [1, n] and j ∈ [1, T], and returns the corresponding revocation token
grt [i][j]. Note that in VLR-schemes the interval j is omitted.

Note that the signing oracle available to the adversary in TVLR-schemes takes time interval
j as an additional input, thus allowing the adversary to request group signatures for arbitrary
time intervals. Furthermore, the opening oracle Open used in the adversary model for schemes
without VLR/TVLR property is replaced by the revocation oracle Revoke modeling the fact
that in VLR/TVLR-schemes knowledge of revocation tokens suffices to implicitly open the
group signatures.
It is further possible to extend the above adversary model towards dynamic VLR/TVLR­

schemes with the appropriate oracles for handling the dynamic admission to the group as
previously used in Section 2.2.3.

8.1.4. Anonymity Definitions for VLR/TVLR-Schemes

The anonymity requirement of VLR/TVLR group signature schemes aims at protection of
the signers’ identities and is defined similarly to the requirement of insider anonymity for
schemes without VLR/TVLR properties. That is, in the anonymity experiment the adversary
can corrupt all members of the group except for the two members i0 and i1 who serve as
potential signers of the challenge group signature σ∗ . The main reason for not considering
full anonymity in the context of VLR/TVLR-schemes is that existing solutions allow efficient
computation of revocation tokens for member i from the corresponding secret signing key
gsk [i]. Therefore, providing the anonymity adversary with gsk [i0] and gsk [i1] (as in case
of full anonymity) would allow for immediate identification of the signer through the implicit
opening procedure of existing VLR/TVLR-schemes. For this reason, we only discuss the insider
anonymity requirement, which was also called selfless anonymity in [38]. In case of TVLR
schemes this requirement also captures the already mentioned notion of backward unlinkability,
which requires that group signatures σ, produced by some member i within time intervals j
in which i was not revoked, remain unlinkable. This is modeled by allowing the adversary to
ask for revocation tokens of potential signers i0 and i1 in time intervals j > t where t is the
interval used to generate the challenge signature σ∗ . Thus, intuitively, knowledge of grt [i][j]
in TVLR-schemes should not allow the adversary to efficiently compute grt [i][j − 1].

Definition 8.5 (Insider Anonymity : VLR/TVLR) A VLR/TVLR group signature sche­
me Γ = (GKg, GSign, GVrfy) provides insider anonymity if for all probabilistic, polynomial-time
adversaries A = (A1, A2), the following advantage function is negligible (in κ):

AdvI-AN ExptI-AN 1
Γ,A (1

κ , n) = Pr Γ,A (1
κ , n) = 1 − .

2

The associated I-AN-experiment ExptI-AN(1κ, n) proceeds as follows: Γ,A

Federal Office for Information Security 159

8. Group Signatures with Verifier-Local Revocation

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , grt , gsk).

Attack Stage I. Adversary A1 receives gpk . In TVLR-schemes at the beginning of every time
interval j ∈ [1, T], A additionally receives notification that the interval is started, i.e.
that j has been incremented.

1.	 A1 can submit queries to the oracles Corrupt(·), GSign(gsk [·], ·, ·), and Revoke(grt , ·, ·).
2.	 A1 stops and eventually outputs a tuple (st, i0, i1,m ∗) containing some state infor­

mation st, two uncorrupted identities i0, i1 ∈ [1, n], and a challenge message m ∗ .
Furthermore, if Γ is a TVLR-scheme and the output of A occurs at time interval t
then revocation oracle Revoke(grt , ·, ·) must not have been queried by A on inputs
(i0, j) or (i1, j) for any j ≤ t.

Challenge Stage. A bit b ∈ {0, 1} is chosen at random and the signature generation algorithm
GSign(gsk [ib], t, m ∗) is executed to produce the challenge group signature σ∗ . If Γ is a
VLR-scheme then t is omitted from the input to GSign.

Attack Stage II. Adversary A2 receives (st, σ∗).

1.	 A2 can submit queries to the oracles Corrupt(·), GSign(gsk [·], ·, ·), and Revoke(grt , ·, ·)
as before, subject to the following restrictions:

a) The corruption oracle Corrupt(·) ignores queries of the form i0 and i1.

b) The	 revocation oracle Revoke(grt , ·, ·) ignores queries of the form (i0, j) and
(i1, j) for any j ≤ t. If Γ is a VLR-scheme then revocation oracle ignores any
query for i0 or i1.

2.	 A2 stops and eventually outputs a bit b∗ .

Output: If b∗ = b then the experiment outputs 1, otherwise it outputs 0.	 ♦

8.1.5. Traceability Definitions for VLR/TVLR-Schemes

We consider the requirement of traceability in VLR/TVLR-schemes as protection against at­
tacks mounted by a coalition of malicious group members to generate a group signature that
cannot be opened through the implicit opening procedure. We provide definition of full trace­
ability for VLR/TVLR-schemes where the adversary may form coalitions with the group man­
ager. We consider here only static schemes, where the only secret of the group manager is a
vector of revocation tokens grt , which the adversary receives as input.

Definition 8.6 (Full Traceability : VLR/TVLR) A VLR/TVLR group signature scheme
Γ = (GKg, GSign, GVrfy) provides full traceability if for all probabilistic, polynomial-time adver­
saries A, the following advantage function is negligible (in κ):

AdvF-TR , n) = Pr ExptF-TR(1κ , n) = 1 Γ,A (1
κ	

Γ,A .

The associated F-TR-experiment ExptF-TR
Γ,A (1

κ, n) proceeds as follows:

Federal Office for Information Security 160

8. Group Signatures with Verifier-Local Revocation

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , grt , gsk).

Attack Stage. Adversary A receives (gpk , gsk , grt). At some point, A stops and eventually
outputs a tuple (j∗ , RLj

∗
∗ ,m ∗, σ∗). If Γ is a VLR scheme then the interval j∗ is empty and

the output revocation list is denoted RL ∗ .

Output. If GVrfy(gpk , j∗ , RL ∗
j∗ ,m ∗, σ∗) = 1 and the implicit opening procedure Open(gpk ,

grt [i][j∗],m ∗, σ∗) = 0 for all i ∈ [1, n] then the experiment outputs 1, otherwise it outputs
0. If Γ is a VLR-scheme then Open ignores the interval j∗ and is executed using all grt [i],
i ∈ [1, n]. ♦

The output conditions of the F-TR-experiment ensure that the forged signature σ∗ is valid
but cannot be opened using the revocation tokens. In case of TVLR-schemes validity of the
signature and revocation tokens used to check the output conditions are bound to some time
interval j∗ specified by the adversary.

Remark 8.1.2 Note that dynamic VLR/TVLR-schemes cannot achieve full traceability for the
same reason as dynamic group signature schemes without VLR/TVLR property cannot achieve
it (cf. Section 2.2.5). That is, dynamic VLR/TVLR schemes can only achieve the weaker notion
of insider traceability where the adversary does not receive group manager’s secret key gmsk .
An appropriate definition of insider traceability for static and dynamic VLR/TVLR-schemes
can be obtained analogously to Definitions 2.5 and 2.13 for static and dynamic group signature
schemes without VLR/TVLR property.

Remark 8.1.3 Our definition of full traceability for VLR/TVLR-schemes differs from the
traceability definitions used by Boneh and Shacham [38] and by Nakanishi and Funabiki [146].
In particular, we do not consider attacks where a coalition of malicious members generates
a valid group signature that opens to some other member of the group. We model these
attacks using non-frameability definitions in Section 8.1.6 to maintain consistency with previous
schemes without VLR/TVLR property.

8.1.6. Non-Frameability Definitions for VLR/TVLR-Schemes

The non-frameability requirement for VLR/TVLR-schemes protects against attacks where a
coalition of malicious group members generates valid group signatures for which the implicit
opening procedure identifies some honest group member as a signer. We define full non­
frameability of VLR/TVLR-schemes where the adversary may form coalitions of malicious
group members and is furthermore given access to the group manager’s secrets (which in case
of static VLR/TVLR-schemes is composed of grt).

Definition 8.7 (Full Non-Frameability : VLR/TVLR) A VLR/TVLR group signature
scheme Γ = (GKg, GSign, GVrfy) provides full non-frameability if for all probabilistic, polynomial­
time adversaries A, the following advantage function is negligible (in κ):

AdvF-NF , n) = Pr ExptF-NF(1κ , n) = 1 Γ,A (1
κ

Γ,A .

The associated F-NF-experiment ExptF-NF
Γ,A (1

κ, n) proceeds as follows:

Federal Office for Information Security 161

8. Group Signatures with Verifier-Local Revocation

Initialization. The key generation algorithm GKg(1κ, n) is executed to produce (gpk , grt , gsk).

Attack Stage. Adversary A receives (gpk , grt).

1.	 A can submit queries to the oracles Corrupt(·) and GSign(gsk [·], ·, ·).

2.	 A stops and eventually outputs a tuple (j∗ , RL ∗
j∗ ,m ∗, σ∗). If Γ is a VLR scheme then

the interval j∗ is empty and the output revocation list is denoted RL ∗ .

Output. If all of the following holds then the output of the experiment is 1:

1.	 GVrfy(gpk , j∗ , RL ∗
j∗ ,m ∗, σ∗) = 1

2. There exists i∗ ∈ [1, n] such that implicit Open(gpk , grt [i∗][j∗],m ∗, σ∗) = i∗ .

3.	 A did not submit i∗ to Corrupt(·) or grt [i∗][j∗] ∈ RL ∗
j∗

4.	 A did not submit (i∗, j∗ ,m ∗) to GSign(gsk [·], ·, ·).

Otherwise the output is 0.	 ♦

The output conditions of the F-NF-experiment ensure that the forged signature σ∗ is valid
for some time interval j∗ and that a signer i∗ identified through the implicit opening procedure
has not been corrupted by the adversary, unless the adversary includes the revocation token
grt [i∗][j∗] into the output revocation list RL ∗

j∗ , meaning that verification of σ∗ at interval j∗

was successful even though i∗ was already revoked.

Remark 8.1.4 The above definition can be extended towards dynamic VLR/TVLR-schemes
by providing the adversary with the entire group manager’s secret key gmsk and ensuring that
forgery of σ∗ occurred with respect to some honestly admitted group member i∗ using similar
restrictions as for dynamic group signature schemes in Section 2.2.6.

Remark 8.1.5 Furthermore, a weaker notion of insider non-frameability can be obtained from
the above definition by preventing adversarial access to the group manager’s secrets. The
resulting definition would be similar to Definitions 2.7 and 2.14 used in the context of static
and dynamic group signatures schemes without VLR/TVLR property, respectively.

8.2. The Boneh-Shacham Scheme

In this section we present the VLR group signature scheme proposed by Boneh and Shacham [38].
This scheme, which we refer to as BS, is static and was one of the first schemes that provided ver­
ifier local revocation. The BS scheme is thus a representative of VLR group signature schemes
that we defined in Section 8.1. Moreover, it comes with distributed authorities for issuing the
secret signing keys to prospective group members and for opening their group signatures, thus
being also representative of group signature schemes that we defined in Section 2.4. In the
following we describe the algorithms and security of the BS scheme.

Federal Office for Information Security 162

2

8. Group Signatures with Verifier-Local Revocation

8.2.1. The BS Scheme

The BS group signature scheme has a single security parameter κ ∈ N and uses bilinear groups
G1 = (g1), G2 = (g2), and GT of prime order Q with |Q| = κ, a bilinear map e : G1 ×G2 → GT ,
and an efficiently computable homomorphism ψ from G2 to G1 with ψ(g2) = g1. Note that the
latter requirements rules out realizations of the BS scheme based on bilinear maps of Type-3
from Definition 3.8. Additionally, the scheme uses two hash functions Hash1 : {0, 1}∗ → G2 and
Hash2 : {0, 1}∗ → ZQ, both modeled as random oracles. In the following we specify the core
algorithms and protocols of the BS scheme. Our description follows the specification from [38].

Key generation. The key generation algorithm GKg on input 1κ and the number of group
members n performs the following steps:

1. Select γ ∈R Z∗ and set w = g2
γ .Q

2. For each user i ∈ [1, n], generate a tuple (Ai, xi) with xi ∈R Z∗ such that γ + xi = 0 and Q
1/(γ+xi)Ai = g1 .

3. Output (gpk , RL, grt , gsk) such that:

• group public key gpk = (Q, G1, G2, g1, g2, e, w)

• revocation list RL is initially empty

• n-element vector of revocation tokens of member i: grt [i] = (Ai)

• n-element vector of secret signing keys of member i: gsk [i] = (gpk , Ai, xi).

It is assumed that key generation is performed in a trusted way. In particular, this means
that the elements γ and xi, with i ∈ [1, n], are chosen independently at random from Z∗ and,Q

more importantly, γ is not known to any party except for the issuer.
Since γ is not used after the key generation is performed it should be safely erased by the

issuer (cf. Section 2.4.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , Ai, xi) of member i and a message m ∈ {0, 1}∗, and proceeds as follows:

1. Pick a random nonce r ∈R Z∗ Obtain generators (û, v̂) in G2 from Hash1 asQ.

(û, v̂) = Hash1(gpk , m, r) ∈ G2
2

and compute their images in G1:

u = ψ(û), v = ψ(v̂).

2. Select α ∈R Z∗ and compute: Q

T1 = u α , T2 = Aiv α .

Federal Office for Information Security 163

1

8. Group Signatures with Verifier-Local Revocation

3. Compute S as a signature of knowledge

α −α xiSoK α, xi : T1 = u and e(T2v , wg 2) = e(g1, g2) m .

4. Output group signature σ = (S, r, T1, T2).

The SoK signature proves that the signer is in possession of a pair (Ai, xi) such that Ai =
1/(γ+xi)g ; thus, proving that the signer has a valid signing key gsk [i].

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (Q, G1, G2, g1, g2, e, w), the revocation list RL, a message m, and a candidate
group signature σ and proceeds as follows:

1. Parse σ as (S, r, T1, T2).

2. Compute u and v as in the signature generation algorithm.

3. Check that S is a valid SoK signature on message m (output 0 if not).

4. For all Ai = grt [i] ∈ RL with i ∈ [1, n], check whether Ai is encoded in (T1, T2) by
checking if

e(T2/Ai, û) = e(T1, v̂).

If no element of RL is encoded in (T1, T2) then output 1; otherwise output 0.

Implicit opening procedure. The implicit opening algorithm Open takes as input the group
public key gpk = (Q, G1, G2, g1, g2, e, w), the vector of revocation tokens grt , a message m, and
a group signature σ and proceeds as follows:

1. Check for all i ∈ [1, n] whether GVrfy(gpk , grt [i], m, σ) = 0.

2. Output the first such i or 0 if no such i is found.

8.2.2. Security of the BS Scheme

Boneh and Shacham [38] were the first to introduce a formal model and security definitions
for group signature schemes with verifier local revocation property, which we defined in Sec­
tions 8.1.4 to 8.1.6. In our model in Section 8.1 we separate their original definition of trace­
ability into two definitions by considering non-frameability as a distinct goal. In the following,
we discuss the security of the BS scheme based on our definitions.

Anonymity. The BS scheme seems to offer insider anonymity from Definition 8.5 in the
Random Oracle Model under the DLIN assumption in G2 (cf. Definition 3.10). The SoK
signature (in the signature generation) has statistical ZK property and thus keeps xi and α
secret. Moreover, T1 and T2 are parts of the Linear Encryption of Ai and thus hide Ai under
the DLIN assumption. Boneh and Shacham prove their scheme to provide selfless anonymity,

Federal Office for Information Security 164

8. Group Signatures with Verifier-Local Revocation

which corresponds to our notion of insider anonymity, by showing how to use a successful insider
anonymity adversary to break the DLIN assumption.

Traceability. The BS scheme seems to provide full traceability under the q-SDH assumption
in (G1, G2) (cf. Definition 3.9), given that γ is erased after the key generation process as
recommended1 . The adversary A would have to come up with the group signature σ∗ =
(S∗ , r ∗, T 1

∗, T 2
∗) on some message m ∗ such that the signature is valid but the algorithm Open

fails, i.e. returns 0. The ZK property of S∗ ensures that no information about xi and α is leaked
and its soundness property ensures that the signer is in possession of a valid pair (Ai, xi), which
is unforgeable under the q-SDH assumption. The soundness property of the SoK signature S∗

thus ensures that if σ∗ is valid then its components T1
∗, T 2

∗ encrypt Ai.

Non-Frameability. The BS scheme seems to achieve the notion of full non-frameability from
Definition 8.7 under the q-SDH assumption in (G1, G2) (cf. Definition 3.9). This is because the
algorithm Open first ensures that (m ∗, σ∗) is valid using the verification procedure. The PoK
property of the SoK signature S∗ (which is part of σ∗) implies that σ∗ has been produced with
knowledge of xi. Although the adversary A knows the revocation token Ai of user i, it remains
hard for A to actually obtain xi due to the hardness of the DL problem in G1. We notice
that the traceability notion used by Boneh and Shacham [38] actually implies our definition of
non-frameability (cf. Remark 8.1.3).

8.3. The Nakanishi-Funabiki Scheme

In this section we present the group signature scheme proposed by Nakanishi and Funabiki [146].
This scheme, which we refer to as NF, is static and was the first scheme that considered
verifier local revocation with backward unlinkability based on bilinear maps. The NF scheme
is thus a representative of TVLR group signature schemes that we defined in Section 8.1.
Moreover, it comes with distributed authorities for issuing the secret signing keys to prospective
group members and for opening their group signatures, thus being also representative of group
signature schemes defined in Section 2.4. The Nakanishi-Funabiki scheme can be seen as an
extension of the Boneh-Shacham scheme from Section 8.2 towards a VLR property with time
intervals. It should be noticed that security of the NF scheme has been proven in the random
oracle model and that the TVLR approach of Nakanishi and Funabiki was later applied by
Libert and Vergnaud [131] to the group signature scheme proposed by Boneh and Waters [40]
to achieve the TVLR property in the standard model (though in a less efficient way and under
somewhat stronger hardness assumptions). In the following we thus focus on the description of
algorithms and security underlying the NF scheme.

1γ can be seen as the secret key of the issuer in the distributed authorities setting, which is not needed
anymore after the key generation process. If γ would not be erased but instead stored as ik , this issuer key
would be handed to the adversary in the traceability game, reducing the scheme’s security to insider traceability.

Federal Office for Information Security 165

8. Group Signatures with Verifier-Local Revocation

8.3.1. The NF Scheme

The NF group signature scheme has a single security parameter κ ∈ N and uses cyclic groups
G = (g) and GT of prime order Q with |Q| = κ, and a bilinear map e : G × G → GT . In
the following we specify the core algorithms and protocols of the NF scheme. Our description
follows the specification from [146].

Key generation. The key generation algorithm GKg on input 1κ , the number of groups
members n and the total number of time intervals T performs the following steps:

1. Select g̃ ∈R G.

2. Select hj ∈R G for all j ∈ [1, T].

3. Select γ ∈R Z∗ and set w = gγ .Q

4. For each user i ∈ [1, n], generate a tuple (Ai, xi) with xi ∈R Z∗ such that γ + xi = 0 and Q
1/(γ+xi)Ai = g .

5. Compute Bij = hxj
i for all i ∈ [1, n] and j ∈ [1, T].

6. Output (gpk , RL, grt , gsk) such that:

•	 group public key gpk = (Q, G, GT , g, ̃g, e, h1, . . . , hT , w)

•	 revocation lists RLj are initially empty

•	 (n × T)-element vector of revocation tokens for member i and interval j: grt [i][j] =
(Bij)

•	 n-element vector of secret signing keys of member i: gsk [i] = (gpk , Ai, xi).

It is assumed that key generation is performed in a trusted way. In particular, this means
that the elements hj , γ, and xi are chosen independently at random from G respectively Z∗

Q

and, more importantly, γ is not known to any party except for the issuer.
Since γ is not used after the key generation is performed it should be safely erased by the

issuer (cf. Section 2.4.
Compared to the BS scheme (cf. Section 8.2), the secret signing keys stay the same whereas

gpk is extended by the components h1, . . . , hT and grt stores entries Bij which depend on hj
and xi, thus enabling revocation in specified time intervals.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , Ai, xi) of member i, a time interval j ∈ [1, T], and a message m ∈ {0, 1}∗ .
Thereafter, it is assumed that m includes the time interval j, binding the signature to that
interval. The algorithm proceeds as follows:

1. Select α, β, δ ∈R Z∗ and compute: Q

α β	 δT1 = Aig̃ , T2 = g α g̃ ; T3 = e(g xi , hj)
δ , T4 = g

Federal Office for Information Security 166

� �

8. Group Signatures with Verifier-Local Revocation

2. Compute S as a signature of knowledge

T1 = Aig̃
α and T2 = gαg̃β and T3 = e(gxi , hj)δ SoK α, β, δ, xi, Ai : m .

T4 = gδ and e(Ai, wgxi) = e(g, g)

3. Output group signature σ = (S, T1, T2, T3, T4).

The SoK signature proves that the signer is in possession of a pair (Ai, xi) such that Ai =
g1/(γ+xi); thus, proving that the signer has a valid signing key gsk [i]. The elements T3 and T4

in the signature bind it to the specified time interval j.

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (Q, G, GT , g, ̃g, e, h1, . . . , hT , w), a time interval j ∈ [1, T], the corresponding
revocation list RLj , a message m, and a candidate group signature σ and proceeds as follows:

1. Parse σ as (S, T1, T2, T3, T4).

2. Check that S is a valid SoK signature on message m (output 0 if not).

3. For each element grt [i][j] = Bij ∈ RLj , check whether

T3 = e(T4, Bij).

If none of the elements in RLj satisfies the equation then output 1; otherwise output 0.

Implicit opening procedure. The implicit opening algorithm Open takes as input the group
public key gpk = g, e, h1, . . . , hT , w), the vector of revocation tokens grt , a time (Q, G, GT , g, ̃
interval j ∈ [1, T], a message m, and a group signature σ and proceeds as follows:

1. Check for all i ∈ [1, n] whether GVrfy(gpk , grt [i][j], m, σ) = 0.

2. Output the first such i or 0 if no such i is found.

8.3.2. Security of the NF Scheme

Nakanishi and Funabiki [146] extend the anonymity notion proposed by Boneh and Shacham [38]
towards backward unlinkability as discussed in Section 8.1.4. In the following, we discuss the
security of the NF scheme based on the definitions for TVLR schemes, i.e., we separate the
traceability notion used in [146] into our notions of traceability and non-frameability.

Anonymity. The NF scheme seems to provide insider anonymity from Definition 8.5 in the
Random Oracle Model under the DBDH assumption in bilinear groups (G, G) (cf. Defini­
tion 3.11). The SoK signature (in the signature generation algorithm) has statistical ZK prop­
erty and does not reveal information about Ai, xi, α, β, and δ. Backward unlinkability is
provided by the fact that the computation of hxjl

i from an other token hxj
i is infeasible. Using

the DBDH assumption and assuming that the hash function used in the generation of S behaves

Federal Office for Information Security 167

8. Group Signatures with Verifier-Local Revocation

as a random oracle, Nakanishi and Funabiki could show that signature values T1, T2, T3, and
T4 produced for some time interval j make it hard for the anonymity adversary to distinguish
between the two possible signers of this signature as long as their secret signing keys need not
to be revealed to the adversary.

Traceability. The NF scheme seems to offer full traceability under the q-SDH assumption in
(G, G) (cf. Definition 3.9), given that γ is erased after the key generation process as recom­
mended2 . The adversary A has to come up with the group signature σ∗ = (S∗, T 1

∗, T 2
∗, T 3

∗, T 4
∗)

on some message m ∗ such that the signature is valid but the algorithm Open outputs 0. The
ZK property of S∗ ensures that no information about Ai, xi, α, β, and δ is leaked and the
soundness property ensures that the signer is in possession of a valid secret signing key (Ai, xi).
Nakanishi and Funabiki show that it is infeasible for the traceability adversary to obtain a valid
pair (Ai, xi) satisfying the relationship Ai = g1/(γ+xi) under the q-SDH assumption.

Non-Frameability. The NF scheme seems to satisfy the notion of full non-frameability from
Definition 8.7 under the q-SDH assumption in (G, G) (cf. Definition 3.9). The reason is that the
algorithm Open first ensures that (m ∗, σ∗) can be successfully verified. The PoK property of the
SoK signature S∗ (which is part of σ∗) implies that σ∗ has been produced with knowledge of xi.
Although the adversary A knows the revocation tokens Bij of user i, it remains hard for A to
actually obtain xi due to the hardness of the DL problem in G. We notice that the traceability
notion used by Nakanishi and Funabiki [146] actually implies our notion of non-frameability
(cf. Remark 8.1.3).

8.4.	 The Bichsel-Camenisch-Neven-Smart-Warinschi
Scheme

In this section we present the VLR variant of the group signature scheme proposed by Bichsel,
Camenisch, Neven, Smart, and Warinschi [31] described in Section 7.3. This variant, which
we refer to as BCNSW-VLR, is – as the BCNSW scheme – dynamic with verifiable opening
(cf. Section 2.3) and involves user PKI for potential group members (cf. Section 2.3.2). Unlike
the basic BCNSW scheme, it allows for verfier-local revocation. In the following we describe
algorithms of the BCNSW-VLR scheme focusing on its VLR-specific modifications, and provide
a short discussion of its security with respect to the security notions for VLR schemes.

8.4.1. The BCNSW-VLR Scheme

The BCNSW-VLR group signature scheme uses the same setting as the BCNSW scheme,
namely a user PKI (connected with an unforgeable digital signature scheme Σ = (Kg, Sign, Vrfy)
specified in Section 3.4), a single security parameter κ ∈ N, bilinear groups G1 = (g1), G2 =

2γ can be seen as the secret key of the issuer in the distributed authorities setting, which is not needed
anymore after the key generation process. If γ would not be erased but instead stored as ik , this issuer key
would be handed to the adversary in the traceability game, reducing the scheme’s security to insider traceability.

Federal Office for Information Security 168

8. Group Signatures with Verifier-Local Revocation

(g2), and GT of prime order Q with |Q| = κ and a bilinear map e : G1 × G2 → GT , two
hash functions Hash1, Hash2 : {0, 1}∗ → ZQ (modeled as random oracles), and the ordinary
Camenisch-Lysyanskaya signature scheme [57, Scheme A] with re-randomizable signatures. In
the following we specify the core algorithms and protocols of the BCNSW-VLR scheme.

The key generation procedure remains the same as for the basic BCNSW scheme and addi­
tionally outputs an empty revocation list RL and an empty list of revocation tokens grt .

The user key generation procedure remains the same as for the basic BCNSW scheme.

The join protocol remains the same as for the basic BCNSW scheme; the group manager only
stores the revocation token grt [i] = (wi) in addition.

The signature generation procedure remains the same as for the basic BCNSW scheme.

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (Q, G1, G2, g1, g2, e, X, Y), the revocation list RL, a message m, and a candi­
date group signature σ and proceeds as follows:

1. Parse σ as (S, T1, T2, T3).

2. Check that e(T1, Y) = e(T2, g2) and that S is a valid SoK signature on message m; output
0 if not.

3. For all grt [i] = wi ∈ RL check whether e(T3, g2) = e(T1, X)e(T2, wi) holds. If none of the
elements in RL satisfies the equation then output 1; otherwise output 0.

The idea of Bichsel et al.’s VLR construction is to integrate a part of the opening procedure
into the verification. The needed modifications are possible in the sub-class of schemes where it
suffices that the Open algorithm gets only (gpk , m, σ, reg) as input instead of (gmsk , m, σ, reg)
(i.e., just the registration list reg is needed to open a signature, not also the group manager’s
secret key gmsk). Note that the BCNSW scheme (Section 7.3) falls into this sub-class. To be
exact, the element wi of a user’s entry in reg suffices to identify the issuer of a signature, thus
the group manager simply has to store wi in RL in order to revoke a user i.

Implicit opening procedure. The implicit opening algorithm Open, extended to provide
verifiable opening, takes as input the group public key gpk = (Q, G1, G2, g1, g2, e, X, Y), the
vector of revocation tokens grt , the registration list reg , a message m, and a group signature
σ and proceeds as follows:

1. Parse σ as (S, T1, T2, T3).

2. Check for all i ∈ [1, n] whether GVrfy(gpk , grt [i], m, σ) = 0.

Federal Office for Information Security 169

8. Group Signatures with Verifier-Local Revocation

3. For the first such i compute ki = e(g1, ri) and J as the NIZKPoK proof

e(T3,g2) e(g1,wi)NIZKPoK wi, Ki : = e(T2, wi) and ki =
e(T1,X) e(g1,X)Ki

using reg [i] = (wi, ri, Ki, σ̄i).

4. Output (i, τ) where τ = (ki, σ̄i, J).

The judgement procedure remains the same as for the basic BCNSW scheme.

8.4.2. Security of the BCNSW-VLR Scheme

Bichsel et al. [31] note that security properties of their basic BCNSW scheme remains preserved
under the verifier-local revocation extension. We thus just recall that the BCNSW scheme (and
so also the BCNSW-VLR scheme) provides insider anonymity (cf. Section 2.3.4) in the Ran­
dom Oracle Model under the SDLP assumption in (G1, G2) (cf. Definition 3.13) and the DDH
assumption in G1, insider traceability (cf. Definition 2.18) under the LRSW assumption in
(G1, G2) (cf. Definition 3.12), and full non-frameability (cf. Definition 2.21 under the SDLP
assumption in (G1, G2) (cf. Definition 3.13) and the unforgeability of the underlying digital sig­
nature scheme Σ (cf. Definition 3.16). These properties remain intuitively unchanged because
the only modification to the BNCSW scheme in order to achieve VLR is the additional list of
revocation tokens grt that contain elements wi from the registration list reg for each revoked
entry. In the anonymity, traceability, and non-frameability games for VLR schemes, the ad­
versary learns the list grt , while in the corresponding games for non-VLR schemes it learns
reg . Therefore, knowledge of grt in VLR scheme does not provide more information to the
adversary than knowledge of reg in non-VLR schemes. Finally, we notice the BCNSW-VLR
does not provide backward unlinkability, i.e. it does not capture time intervals of signatures
and revocations as deployed in TVLR schemes. Therefore, revocation of a member in the
BCNSW-VLR scheme allows to link group signatures generated by that member in the past.

Federal Office for Information Security 170

9.	 Comparison of Group Signature
Schemes

The choice of a suitable group signature scheme for a particular application may depend on a
number of facts. Surely, functional properties offered by the scheme like its dynamic behavior,
support for revocation and verifiability of the opening procedure play the key roles. Also
security requirements satisfied by the scheme and in some cases their strength may influence
the selection process. Last but not least, efficiency and performance considerations may become
important if applications are executed on resource-constrained devices and in communication
networks with lower bandwidths. In this chapter we characterize and compare the discussed
group signature schemes from the previous chapters by considering their properties, security,
and efficiency. We also address optional extensions of these schemes.

9.1.	 Functionality and Properties

9.1.1. Overview

This section compares described group signature schemes based on their functionality and prop­
erties. This comparison is done with respect to the dynamic behavior of schemes, their ability
to open group signatures in a publicly verifiable way (VO property), to support separation
of duties through distribution of management roles between the issuer and the opener (DA
property), and the ability to revoke issued membership certificates. Results of our comparison
are summarized in Table 9.1.
In the upper part of Table 9.1 we list four group signature schemes in the RSA setting from

Chapter 5. All of them either provide or can be extended to provide dynamic admission of
group members, while only the Ateniese-Camenisch-Joye-Tsudik (ACJT), Tsudik-Xu (TX),
and the Camenisch-Groth (CG) schemes can be further used to revoke signing right of the
group members. The Kiayias-Yung (KY) scheme is the only scheme, which assumes distributed
authorities. The verifiable opening procedure is supported by the ACJT, TX, and KY schemes.
However, TX scheme offers weaker opening functionality than ACJT and KY schemes, in
particular in case of collusion attacks it cannot identify all colluding participants.
In the middle part of Table 9.1 we compare two group signature schemes in the DL setting

from Chapter 6. The Ateniese-de Medeiros (AM) scheme and the Furukawa-Yonezawa (FY)
scheme are both dynamic and provide support for the verifiable opening procedure. Yet, only
FY assumes separation of duties between the issuer and the opener. Interestingly, none of the
DL schemes offers revocation.

171

9. Comparison of Group Signature Schemes

Table 9.1.: Functionality and Properties of Group Signature Schemes

Group Signature Scheme Static Dynamic
Verifiable
Opening

Distributed
Authorities

Revocation

ACJT
TX
CG
KY

[16] [5.1]
[178] [5.3]
[49] [5.4]

[119] [5.5]
.

.

.
(.)
.

.
(.)

. .

(.)
.
(.)

AM
FY

[12] [6.1]
[94] [6.2]

.

.
.
. .

BBS
CL
BCNSW
BS
NF
BCNSW-VLR

[36] [7.1]
[57] [7.2]
[31] [7.3]
[38] [8.2]

[146] [8.3]
[31] [8.4]

.

.

.

.

.

.

.

.

(.)
.

.

.

(.)

VLR
TVLR
VLR

. — property is provided; (.) — property is provided with a separate extension.

In the bottom part of Table 9.1 we compare several group signature schemes in the set­
ting of bilinear maps, including schemes from Chapter 7 and schemes with the special prop­
erty of verifier-local revocation from Chapter 8 (all of which require bilinear maps). The
Boneh-Boyen-Shacham (BBS), Boneh-Shacham (BS), and Nakanishi-Funabiki (NF) schemes
are strictly static, whereas the Camenisch-Lysyanskaya (CL) and both versions of the Bichsel-
Camenisch-Neven-Smart-Warinschi (BCNSW and BCNSW-VLR) schemes are dynamic. Mem­
bership revocation is offered by all VLR and TVLR schemes and through the optional extension
of the BBS scheme. Only BCNSW scheme and its VLR version can open signatures in a ver­
ifiable way. In contrast, all other schemes allow to distribute the role of the group manager
amongst two different authorities. It should be noticed that BS and BBS schemes have been
originally described as static schemes. The DA property of these schemes can only be obtained
by assuming that after the key generation procedure the issuer goes offline and erases its issuing
key. Finally, we observe that NF is the only TVLR scheme that we consider in our comparison.
In the following we discuss the importance of the different properties and draw some overall

conclusions about the described group signature schemes.

9.1.2. Dynamic Behavior

Dynamic group signature schemes are usually preferable if the number and identities of potential
group members are not known in advance, or if membership certificates have to be computed
and issued on-demand. However, static group signatures can also be used in the dynamic
setting, although with some significant limitations: In static schemes n membership credentials
can be pre-computed by the group manager, who then hands over these credentials one by
one to prospective group members. This requires, however, that pre-computed membership

Federal Office for Information Security 172

9. Comparison of Group Signature Schemes

credentials are securely stored prior to being handed over and that the group manager does not
use any of these credentials. Therefore, this approach inherently requires the group manager
to be fully trusted. Moreover, this approach cannot be used with a user PKI, since PKI-based
identities of future group members may not be known. Hence, static schemes, when applied to
the dynamic setting will not able to provide verifiable opening (which requires either implicit
or explicit use of a user PKI). In the opposite direction, any dynamic scheme can also be used
in a static environment, assuming that the join protocol is executed with each group member
as part of the initial key generation procedure.

Our comparison shows that all of the described group signature schemes in the RSA and the
DL settings offer support for the admission of new group members. This functionality is also
achieved by some of the schemes in the setting of bilinear maps.

9.1.3. Support for Verifiable Opening

The verifiable opening (VO) property prevents a misbehaving group manager from falsely ac­
cusing honest members of the group of having produced group signatures that they did not
produce. This property requires the group manager to output an additional proof τ for the
statement that “identity i belongs to the group member who generated signature σ on the
message m”. This property is useful only if the group manager is not sufficiently trusted or if
the group signature is deployed by an application where possible prosecution of misbehaving
group members is performed by a third party (i.e. judge). Observe that VO property requires
deployment of a user PKI, which may not always exist. Therefore, verifiable opening should be
treated as a rather optional property.

Still, verifiable opening is supported by most of the existing group signature schemes in the
RSA and DL settings. The only scheme we discussed in the setting of bilinear maps that opens
signatures in a verifiable way is the BCNSW scheme.

9.1.4. Support for Distributed Authorities

The ability to distribute the group management and the identification of signers between the
issuer and the opener is useful in applications where a single group manager would not be
trusted to perform both tasks. We observe that such separation of duties is not motivated
by the willingness to balance computation resources across different parties. The latter can
be done by storing the group manager’s secret key at two or more servers with each server
being responsible either for the admission or for the opening procedure. Furthermore, the
instrument of separation is useful only if the issuer and the opener do not collude. Indeed, in
case of collusion group signatures with distributed authorities do not have any advantage from
the security point of view over the group signatures where the authority is centralized. That
is, the DA property still requires a significant amount of trust into the both authorities. On
the other hand, considering that the issuing key and the opening key are inherently stored at
different locations, DA-schemes seem to offer better resilience against potential corruptions of

Federal Office for Information Security 173

9. Comparison of Group Signature Schemes

the authorities; that is corrupting both authorities may become more difficult than breaking
into only one of them.

The DA-property seems to be achievable by static schemes where the group manager’s secret
used to compute the secret signing key of a group member is no longer needed and does not
depend on the secret used to open a group signature. In this case this secret can be though of
being the issuing key and securely erased after the execution of the key generation procedure.
This explains, for example, why BBS and BS schemes can be seen as schemes with distributed
authorities. Nonetheless, this property in static schemes seems not very useful since the group
manager must be trusted to erase parts of its secret key.

We also observe that the deployment of DA-schemes in practice would require additional
work for enforcing the appropriate access control to the registration list reg , which should be
modifiable only by the issuer but at the same time readable by the opener. A potential misuse
of access rights for reg would result in the loss of the key security properties of the DA-scheme.

Our comparison shows that an appropriate dynamic group signature scheme with distributed
authorities can be found in each of the security settings, i.e. the KY scheme in the RSA setting,
the FY scheme in the DL setting, and the CL scheme in the setting of bilinear maps. We
remark that none of existing dynamic schemes with VLR property supports distributed group
authorities.

9.1.5. Support for Membership Revocation

The ability of the group authority to revoke members from the group is equally important
for static and dynamic schemes, and is of great usefulness in practice (akin to revocation in
traditional PKI systems, cf. Section 1.1). Indeed, it cannot be assumed that secret signing keys
of group members will remain secure for the entire life period of the group; for example, members
may store their secret keys at less secure locations or even lose their keys, in which case these
keys would have to be revoked. Furthermore, group members can be revoked if they misbehave
and sign documents that they are not authorized to sign. If a group signature scheme does
not support efficient revocation then the whole system would have to be re-initialized, which is
clearly undesirable in practice.

Support for membership revocation can currently be seen as a bottleneck of existing group
signature schemes. Existing revocation mechanisms are mainly of two types: The first and
less flexible revocation mechanism is based on the update of secret signing keys of unrevoked
group members. One of the practical problems behind this approach is that unrevoked group
members must synchronize their signing keys prior to generating new group signatures and
that also verifiers have to download the up-to-date information about the public key of the
group. The second mechanism eliminates the first problem in that it requires only verifiers to
be in possession of some up-to-date revocation information — schemes with the VLR property
— but not the signers. Although more suitable from the practical point of view we remark
that existing group signature schemes require linear amount of VLR checks (in the number

Federal Office for Information Security 174

9. Comparison of Group Signature Schemes

of revoked group members). On the other hand, VLR mechanism is closer to the revocation
mechanisms of traditional PKI systems, where verifiers check signer’s public key with respect
to the latest CRL of the certification authority.

Our comparison shows that revocation extension of the ACJT scheme, based on dynamic
accumulators from Section 5.2, the revocation mechanism integrated into the TX scheme, and
the revocation extension of the BBS scheme from Section 7.1.3 follows the first less practical
approach. In contrast, VLR support is offered exclusively by schemes operating in the setting
of bilinear maps. In particular, the only dynamic group signature scheme with VLR support is
the BCNSW-VLR scheme. We remark that the NF scheme is also of special interest since it im­
plements VLR with time intervals (TVLR) — a property that becomes useful when anonymity
of revoked group members needs further protection.

9.2. Security Properties

9.2.1. Overview

In this section we compare group signature schemes with regard to the security properties. In
Table 9.2 we give an overview of discussed group signature schemes and mention different flavors
of anonymity, traceability, and non-frameability that these schemes seem to offer. We also
indicate different cryptographic assumptions under which the security properties of respective
schemes seem to hold.

Table 9.2.: Security Properties of Group Signature Schemes

Scheme Setting Anon. Traceab. Non-Fra. Assumptions

ACJT [16] [5.1] RSA full insider full ROM, SRSA, DDH
TX [178] [5.3] RSA insider (insider) full ROM, SRSA, DDH, DSR
CG [49] [5.4] RSA full full full ROM, DL, SRSA
KY [119] [5.5] RSA full insider full ROM, SRSA, DDH, DL

AM [12] [6.1] DL full insider full ROM, DL, DDH
FY [94] [6.2] DL full insider full ROM, GGM, DL

BBS [36] [7.1] BM CPA-full full full ROM, q-SDH, DLIN, DL
CL [57] [7.2] BM full insider full ROM, LRSW, DDH, DL
BCNSW [31] [7.3] BM insider insider full ROM, LRSW, SDLP,

DDH, DL
BS [38] [8.2] BM insider full full ROM, q-SDH , DLIN, DL
NF [146] [8.3] BM insider full full ROM, q-SDH, DBDH, DL
BCNSW­ [31] [8.4] BM insider insider full ROM, LRSW, SDLP,
VLR DDH, DL

In the upper part of Table 9.2 we list four group signature schemes in the RSA setting from

Federal Office for Information Security 175

9. Comparison of Group Signature Schemes

Chapter 5. We observe that three schemes, namely Ateniese-Camenisch-Joye-Tsudik (ACJT),
Camenisch-Groth (CG), and Kiayias-Yung (KY), offer highest security guarantees with regard
to their functionality. In particular, all these schemes are fully anonymous and fully non­
frameable. The TX scheme offers the weaker notion of insider anonymity. The ACJT, TX, and
KY schemes are dynamic and can therefore offer traceability against insiders as the highest
traceability goal. However, TX scheme offers a somewhat weaker notion of traceability, since
two colluding group members can still forge a signature, while only one of these members will be
traced. In contrast, the CG scheme, which we consider here in its basic (static) version, satisfies
the highest notion of full traceability. If the CG scheme is used with its dynamic extension
then its traceability would also hold only against insiders. Security of the mentioned schemes
holds in the Random Oracle Model (ROM) and is based, amongst others, on the Strong RSA
(SRSA) assumption. The ACJT and KY schemes further assume that Decision-Diffie-Hellman
(DDH) assumption holds in QR(N) groups, while the KY and CG schemes also rely on the
hardness of the Discrete-Logarithm (DL) problem, and TX scheme additionally relies on the
Decision Small Residuosity (DSR) assumption from [65].

In the middle part of Table 9.2 we consider group signature schemes in the DL setting from
Chapter 6. The two schemes, Ateniese-de Medeiros (AM) scheme and Furukawa-Yonezawa
(FY), being dynamic offer the highest security guarantees of full anonymity, insider traceability,
and full non-frameability. Security of both schemes is proven in ROM, while FY further relies
on the Generic Group Model (GGM), which is also a very strong assumption. In contrast,
AM assumes hardness of the DDH problem in subgroups of prime order. Additionally, both
schemes rely on the hardness of the DL problem.

In the bottom part of Table 9.2 we compare group signature schemes in the setting of bilinear
maps, including schemes from Chapter 7 and (T)VLR schemes from Chapter 8 (all of which use
bilinear groups). The Camenisch-Lysyanskaya (CL) scheme, being dynamic, offers the strongest
security guarantees for this type of schemes. In contrast, the Bichsel-Camenisch-Neven-Smart-
Warinschi (BCNSW) scheme, which is also dynamic, cannot guarantee full anonymity and is
thus weaker from this perspective. Although Boneh-Boyen-Shacham (BBS) scheme is static,
it can only offer (weaker) CPA-full anonymity, that is anonymity of signers, whose group sig­
natures were opened once, can no longer be guaranteed. In contrast, all (T)VLR schemes, i.e.
Boneh-Shacham (BS), Nakanishi-Funabiki (NF), BCNSW-VLR, are only anonymous against
insiders (aka. selfless anonymity). The reason for the lack of full anonymity in (T)VLR schemes
is that their secret signing keys can be used to compute revocation tokens for corresponding
signers and then break the anonymity property in the revocation check. The BCNSW-VLR
scheme, being dynamic, can only offer insider traceability, whereas static BS and NF schemes
achieve its full version. Security of all mentioned schemes is proven in ROM and often re­
quires several different assumptions. Amongst the most frequent assumptions are q-Strong
Diffie-Hellman (q-SDH) and LRSW, which take care of traceability and non-frameability of the
respective schemes. In contrast, DDH and Decision Linear (DLIN) assumptions are usually
required for anonymity. Interestingly, LRSW is often used together with DDH, whereas q-SDH
typically with DLIN.

Federal Office for Information Security 176

9. Comparison of Group Signature Schemes

9.2.2. Anonymity of Signers

Anonymity of signers is one of the key security properties of group signatures and schemes we
addressed in Table 9.2 offer this property in three different flavors. The strongest anonymity
property is full anonymity (offered by the majority of static and dynamic schemes but not by
schemes with (T)VLR property), which guarantees anonymity of signers and unlinkability of
their signatures even in case when all secret signing keys become known to the adversary. One
may think that such strong anonymity protection is not necessarily needed, since secret signing
keys are likely to be protected and if they are revealed than group signatures become forgeable
anyway. The actual benefit of full anonymity stems from the fact that even if secret signing
keys are exposed in the future (due to careless protection or cryptanalysis) the anonymity
of signers (which is primarily a privacy goal) still remains protected. The notion of CPA-full
anonymity (as offered by the BBS schemes) turns out to be useful in situations where anonymity
in the future should remain protected only for signers, whose signatures were never opened. If
the opening mechanisms is thought to be a method of punishment then CPA-full anonymity
essentially offers future protection for group signers who did not misbehave. The notion of
insider anonymity (offered by BCNSW scheme and all schemes with (T)VLR property) is the
weakest reasonable anonymity goal for group signatures, since it protects anonymity of the
signer against any other group member or a coalition of group members. In practice, insider
anonymity would offer sufficient privacy protection, unless the exposure of secret signing keys
should be taken into account too. On the other hand, there might be situations, where some
signer may deliberately want to claim the origin of some group signature to a third party by
disclosing own secret signing key. This could be useful in group signature schemes without
verifiable opening, where the group manager would not be able to prove this fact alone.

9.2.3. Traceability of Signers

The traceability property ensures that the group manager (or opener in DA-schemes) can always
open (valid) group signatures and identify the signer. Full traceability is the strongest flavor
since it guarantees traceability even in the presence of the malicious group manager (or issuer
in DA-schemes). Unfortunately, this strong requirement can only be satisfied by static schemes
(e.g. CG, BBS, BS, NF). In dynamic schemes the group manager, being responsible for the
admission of group members, can always create “phantom” members and issue signatures on
their behalf. That is for dynamic schemes the (weaker) notion of insider traceability gives the
highest security protection and is fulfilled by the majority of existing dynamic group signatures.
In practice, however, insider traceability seems to be sufficient. The reason is that the role of
the group manager will typically be performed by administrative authorities whose prime goal
is not to abuse the system but rather protect the system from abuses by group members with
signing rights. Furthermore, it is likely that group manager’s (or issuer’s) secret keys will be
well protected and there exposure (e.g. due to break-ins) will likely lead to the re-initialization
of the entire system anyway.

Federal Office for Information Security 177

9. Comparison of Group Signature Schemes

9.2.4. Non-Frameability of Signers

The non-frameability property prevents false attribution of group signatures to group mem­
bers that were not involved in their generation. That is, non-frameability protects primarily
honest group members from being falsely accused of having signed some document. Full non­
frameability is the strongest flavor since it offers such protection even if the group manager
(or both authorities in DA-schemes) are malicious. It seems that full non-frameability is also
desirable in practice. That is, even if the group is managed by authorities that are interested
in preventing abuse of signing rights, these authorities should still not be able to accuse some
innocent user of having abused the system. In group signature schemes with verifiable opening,
i.e. in ACJT, TX, KY, AM, FY, and BCNSW(-VLR) schemes, full non-frameability can only
be achieved through the deployment of a user PKI, in which case it can tolerate malicious
group managers. For this reason the property can also be achieved in dynamic schemes (unlike
full traceability), where user PKI is typically used to verify authenticity of a transcript that
has been previously authenticated by the signer in the joining protocol and whose parts are
revealed by the opening procedure for a given group signature in some verifiable way. Note that
the corresponding user PKI must exist and be managed independently of the group signature
scheme, in particular certification authorities forming the PKI may not coincide with the group
manager (or with issuer/opener in DA-schemes). In group signature schemes where no separate
user PKI is in place (CG, BBS, BS, NF), full non-frameability can only be achieved if the group
manager’s secret key is erased after the distribution of secret signing keys to all members of
the group, which seems to be a reasonable assumption for static schemes only. Finally, we
observe that all group signature schemes from Table 9.2 satisfy this strongest notion of full
non-frameability.

9.2.5. Cryptographic Assumptions

In addition to the security properties offered by respective group signature schemes, crypto­
graphic assumptions serve as another important criteria for evaluation of their security in prac­
tice. We notice that all group signature schemes in Table 9.2 obtain their security properties in
ROM, which is not a standard assumption (cf. Section 3.3.1). This assumption is used because
signing algorithms of these schemes typically output an SoK signature S as part of the group
signature σ such that S is obtained using the ROM-based Fiat-Shamir transformation from an
interactive ZKPoK protocol). On the other hand, ROM-based cryptographic schemes are in
general more efficient and could thus be more suitable for practical purposes. Presented group
signature schemes also differ with regard to their number-theoretic hardness assumptions. In
general, more established assumptions, such as RSA, DL, or DDH, that have stood the test of
time, are preferable. In contrast, cryptography based on bilinear maps is a rather new field, and
many new hardness assumptions in bilinear groups were proposed and used over the past years.
Meanwhile, q-SDH, DLIN, and LRSW belong to widely recognized cryptographic assumptions
in the setting of bilinear maps. We observe that properties of bilinear groups, in particular
their bilinear property, turned out to be very useful for the construction of group signatures. In
particular, it is not known how to achieve (T)VLR property without using bilinear maps, and
also signatures output by such schemes are typically shorter than signatures output by schemes

Federal Office for Information Security 178

9. Comparison of Group Signature Schemes

with comparable functionality in the RSA and DL settings.

9.3.	 Computational Complexity : Costs and Impact of
Different Algorithms

The amount of work required by different algorithms of a group signature schemes becomes a
dominant factor, should the scheme be considered for practical use. Typically, computation
costs of the scheme depend on the deployed cryptographic setting (e.g. RSA, DL, or bilinear
maps) and can be further influenced by the extended properties, such as revocation, verifi­
ability of the opening procedure, etc. In our analysis of computational complexity of group
signature schemes we estimate the amount of most costly operations for different algorithms,
which serves as a good heuristic for the evaluation of its efficiency. In general, we will con­
sider modular exponentiations in different cyclic groups and pairing evaluations as the most
expensive operations. In our analysis we will sometimes use heuristic methods to estimate the
costs, especially with respect to the generation and verification of complex signatures of knowl­
edge that all existing group signature schemes currently apply. Our analysis thus provides a
high-level intuition about the efficiency of different group signature schemes, whose actual com­
putational complexities can slightly differ, when it comes to the exact implementation of these
signatures; for example, by applying different optimization techniques for computing modular
(multi-base) exponentiations and pairing evaluations, which we do not consider in this analysis.

9.3.1. Computational Costs for Group Managers

In Table 9.3 we summarize computational overhead for the authorities that manage the group.
In particular, we address efficiency of key generation and opening procedures. For dynamic
group signature schemes we also estimate the amount of work in the group manager’s part
of the join protocol. Observe that key generation is performed only once and therefore, its
computational efficiency is not as important as say the efficiency of the opening procedure or
the amount of work required to admit new group members in dynamic groups, especially if
groups are large and membership updates are frequent.
The upper part of the table contains group signature schemes in the RSA setting from Chapter

5, namely the Ateniese-Camenisch-Joye-Tsudik (ACJT), Tsudik-Xu (TX), Camenisch-Groth
(CG), and the Kiayias-Yung (KY) schemes. In this setting the most expensive operation is
modular exponentiation. ACJT, TX, and KY schemes are dynamic. Therefore, their key
generation procedure is very efficient. Notice, however, that in the TX scheme a trusted third
party is involved in the generation of group public key. The actual amount of work in dynamic
schemes is performed during the join protocol. The CG scheme is static and the group manager
has to generate secret signing keys for all users during the key generation procedure. We observe
that while group manager’s computations of the join protocol in TX and KY schemes is much
more efficient in comparison to ACJT, the admission procedure of the KY scheme requires
assistance of a trusted third party. The amount of work to open a group signature is similar for
all schemes, if we assume that judge algorithm also verifiers the validity of the group signature.

Federal Office for Information Security 179

9. Comparison of Group Signature Schemes

Table 9.3.: Computational Costs for Group Managers

Group Signature Scheme GKg JoinM Open

ACJT [16] [5.1] 1E ≈ 14E† ≈ 21E
TX [178] [5.3] 1E 1E† ≈ 21E
CG [49] [5.4] 2E + 4mE — ≈ 13E
KY [119] [5.5] 2E 2E† ≈ 17E

AM [12] [6.1] 2E 5E† O(k)E
FY [94] [6.2] 2E ≈ 3E† O(k)E

BBS [36] [7.1] 3E + 1mE — ≈ 20E + 10P
CL [57] [7.2] 7E 6E + 1P † ≈ 20E + 8P
BCNSW [31] [7.3] 2E 17E + 1P † 4E + 9P + 3mP
BS [38] [8.2] 1E + 1mE — ≈ 10E + 4P + 2mP
NF [146] [8.3] 1E + 1mE + 1mtE — ≈ 14E + 6P + 1mP
BCNSW-VLR [31] [8.4] 2E 17E + 1P † 2E + 4P + m(2E + 5P)

E — modular exponentiations; P — pairing evaluations; k — output length of a hash function.
m — number of group members; r — number of revoked members; t — number of time intervals.
† with further costs to verify the user-authenticated information prior to storing it in reg [i].

In the middle part we list two group signatures in the DL setting from Chapter 6, namely the
Ateniese-de Medeiros (AM) and Furukawa-Yonezawa (FY) schemes, where the most expensive
operation is also modular exponentiation. The amount of work in both schemes is quite similar.
The opening procedure of both schemes scheme is very expensive, i.e. linear in the length of
the security parameter, due to the use of a very inefficient signature of knowledge, which is
part of the signature and has to be verified in the opening phase.
The bottom part of the table contains group signatures in the setting of bilinear maps from

Chapter 7, including schemes with verifier-local revocation properties from Chapter 8. In
this setting two operations are considered as expensive, namely modular exponentiations in
input and target groups as well as the actual pairing operation, which is even more expensive.
Note that modular exponentiations in this setting are actually scalar-point multiplications.
We observe that none of the schemes evaluates pairings in the key generation procedure. The
dynamic Camenisch-Lysyanskaya (CL) scheme requires much less work from the group manager
to admit new group members and to open their signatures than the dynamic Bichsel-Camenisch­
Neven-Smart-Warinschi (BCNSW) scheme or the static Boneh-Boyen-Shacham (BBS) scheme.
In particular, the amount of work in the opening procedure of the BCNSW scheme grows
linearly with the number of group members, whereas for the BBS and CL schemes it remains
constant. In group signature schemes with the (T)VLR property, that is in the Boneh-Shacham
(BS), Nakanishi-Funabiki (NF), and BCNSW-VLR schemes, the opening procedure has linear
complexity in the total number of users, i.e. users that were admitted to the group and
possibly revoked later. The reason is that in order to identify the signer while also ensuring
that the signature is valid, the (implicit) opening procedure might need to test each ever issued
revocation token. Therefore, the static BS scheme can be seen as the most efficient one in

Federal Office for Information Security 180

9. Comparison of Group Signature Schemes

terms of the opening procedure since it requires a linear amount of modular exponentiations
rather than pairing operations, yet this scheme does not implement VLR with time intervals
to protect anonymity of revoked signers, which is offered by the NF scheme.
In practice, we may expect that the computations of the group manager are performed on

some powerful device. Therefore, the amount of work of the group manager is not as important
as the computational overhead imposed on the members of the group and on the verifiers of
group signatures.

9.3.2. Computational Costs for Group Members and Verifiers

In Table 9.4 we provide efficiency comparison of the above mentioned schemes regarding the
most important algorithms for the generation and verification of group signatures, while also
considering the computational complexity of the member’s part in the joining procedure (in dy­
namic schemes) and for the publicly executable judgement procedure (in schemes with verifiable
opening).

Table 9.4.: Computational Costs for Members and Verifiers

Group Signature Scheme JoinU GSign GVrfy Judge

ACJT [16] [5.1] ≈ 11E† ≈ 19E ≈ 18E ≈ 22E‡

TX [178] [5.3] 1E† ≈ 17E ≈ 16E ≈ 21E‡

CG [49] [5.4] — ≈ 10E ≈ 12E —
KY [119] [5.5] 0E† ≈ 13E ≈ 14E ≈ 19E‡

AM [12] [6.1] 6E† O(k)E O(k)E O(k)E‡

FY [94] [6.2] ≈ 5E† O(k)E O(k)E O(k)E‡

BBS [36] [7.1] — 12E + 5P ≈ 18E + 10P —

CL [57] [7.2] 2E† 16E + 4P ≈ 16E + 8P —

BCNSW [31] [7.3] 15E + 3P † 4E + 3P 2E + 5P 5E + 10P ‡

BS [38] [8.2] — ≈ 7E + 2P ≈ 10E + 4P + 2rP —

NF [146] [8.3] — ≈ 13E + 4P ≈ 14E + 6P + 1rP —

BCNSW-VLR [31] [8.4] 15E + 3P † 4E + 3P 2E + 5P + 3rP 5E + 10P ‡

E — modular exponentiations; P — pairing evaluations; k — output length of a hash function.
m — number of group members; r — number of revoked members; t — number of time intervals.
† with further costs to create user-authenticated information that the group manager stores

in reg [i].

‡ with further costs to verify the group signature and the user-authenticated information

from reg [i].

Amongst constructions in the RSA setting the most efficient signature generation can be
performed with the static CG scheme. The dynamic KY scheme requires a trusted third party
to be present during the joining protocol. Users do not need to perform heavy computations in
the KY scheme during their admission process, as they receive their secret signing keys from
this trusted party. In contrast, the joining protocol of the dynamic ACJT and TX schemes

Federal Office for Information Security 181

9. Comparison of Group Signature Schemes

proceeds without third parties. Although we focus on the static variant of the CG scheme here,
we observe that its dynamic extension would have comparable costs to the admission step of
the ACJT scheme.
In the DL setting, for both schemes FY and AM the amount of expensive operations in­

creases linearly with the length of the security parameter, in particular the amount of modular
exponentiations is proportional to the output length of the hash function used in the signature
of knowledge. This makes DL-based schemes clearly inefficient in comparison to schemes that
use other cryptographic settings.
In the setting of bilinear maps the dynamic BCNSW scheme seems to have the most efficient

signature generation and verification procedures, when compared to BBS and CL schemes.
Note that BCNSW does not offer full anonymity though, yet it provides verifiable opening.
Regarding schemes with VLR property, we make an observation that their signature genera­
tion procedure requires only constant amount of computation, while the amount of work for
verification increases linearly with the number of revoked group members. Given that pairing
evaluations are more expensive in comparison to modular exponentiations, we can safely as­
sume that verification in the BS scheme becomes more efficient than verification in the NF and
BCNSW-VLR schemes with the increasing number of revocations.

9.3.3. Costs and Impact of Key Generation

The key generation algorithm GKg is executed once by the group manager to create the group
public key gpk , the group manager secret key gmsk and possibly – in case of static schemes
– the group secret keys gsk [i]. Being executed only once, the computational costs of this
algorithm do not add significantly to the overall costs for the group manager. Obviously, the
costs are much higher for static schemes, because they have to produce all the secret keys in
this algorithm. But on the other hand, dynamic schemes add additional cost to the group
manager via the join protocol. All static schemes require only a constant small number of
modular exponentiations for the key generation, while with most of the dynamic schemes the
amount of exponentiations necessary only grows linearly with the number of group members.
The only notable exception is the NF scheme, which provides TVLR property and in which
the amount of modular exponentiations also grows with the number of time intervals that are
used to ensure backward unlinkability for revoked signers.

9.3.4. Costs and Impact of Admission Procedure

The admission process to the group is handled in dynamic group signature schemes through the
join protocol Join, which is executed between the group manager and the prospective member.
Therefore, its computational costs have to be considered for the group manager and for the
joining member separately. The efficiency of the interactive algorithm JoinU on the group mem­
ber’s side becomes significant, if the user’s device is constrained in its computational resources,
which could be the case for many mobile devices. The costs of the interactive algorithm JoinM
on the group manager’s side has in turn less impact since these computations are typically
performed on devices with rich computational resources or dedicated hardware. The computa­
tional complexity of admission procedures differ greatly among the different schemes and there

Federal Office for Information Security 182

9. Comparison of Group Signature Schemes

is no apparent pattern regarding the cryptographic settings that are used. In general, schemes
offering full non-frameability add additional costs to the JoinU algorithm, because they require
the joining member to authenticate parts of the transcript in the join protocol to prevent fram­
ing attacks of possibly malicious group managers. A digital signature scheme would be typically
used for this purpose. Note that these additional costs are not considered in our comparison
table because they heavily depend on the authentication mechanism being used.

9.3.5. Costs and Impact of Group Signature Generation

The signature generation algorithm GSign is executed by a group member each time he signs
a message. It is likely that each group member will execute this algorithm many times, pos­
sibly using resource-constrained devices, e.g. mobile phones or even smart cards. That is,
computational costs of signature generation impose the highest impact on group members and
in particular, are much more important than costs in the admission process. Computation
complexity for signature generation in the RSA and bilinear map settings is constant, i.e. the
number of expensive operations does not increase with the length of the security parameter or
with the number of admitted group members. In practice, we can expect that signature gen­
eration in schemes that use bilinear groups is more efficient than in schemes that use RSA due
to the shorter exponents and modulus sizes, as long as the number of more expensive pairing
evaluations remains not too high. In particular, signing algorithms of CG, BCNSW, and BS
schemes seem to have better efficiency in this respect.

9.3.6. Costs and Impact of Group Signature Verification

The signature verification algorithm GVrfy is public and can be executed by any third party,
which is willing to check the validity of some given group signature. A group signature of
some particular group member will typically be verified several times. That is, verification
costs have also the highest impact on the efficiency of the group signature scheme. As with
signature generation, schemes in the RSA setting and in bilinear groups seem to have more
efficient verification procedures than DL-based constructions, and in practice, verification in
schemes that use bilinear groups might be more efficient than in those that use RSA parameters.
Observe that in all discussed group signature schemes, except for those that provide (T)VLR
property (and the inefficient AM and FY schemes), verification costs do not depend on the size
of the group. (T)VLR schemes commonly have a problem that revocation check, performed as
part of the verification procedure, has to process each published revocation token grt [i] within
some expensive operation, e.g. modular exponentiation in the BS scheme or (less efficient)
pairing evaluation in the NF and BCNSW-VLR schemes.

9.3.7. Costs and Impact of Opening Procedure

The opening procedure Open is executed by the group manager (or opener in schemes with
distributed authorities) whenever a signer of a group signature has to be identified. It is unlikely
that Open will be executed too often since the actual idea of group signatures is to keep signers
anonymous. We can expect that Open is executed as part of the punishment procedure, e.g. if

Federal Office for Information Security 183

9. Comparison of Group Signature Schemes

a group member misused his signing rights, that in turn could lead to the revocation of these
rights. In this case, high costs of the opening procedure would have only minor impact since
the group manager has typically rich computational resources. Another observation is that
group signature schemes with verifiable opening, i.e. ACJT, TX, KY, AM, FY, and BCNSW
schemes, typically have higher computational costs due to the additional computation of proofs
with regard to the output signer’s identity. Moreover, the (implicit) opening procedure of
(T)VLR schemes suffers from linear computational overhead in the number of admitted and
possibly revoked group members.

9.3.8. Costs and Impact of Judgement Procedure

The judgement procedure Judge is publicly executable and is used to check whether the identi­
fication of the signer was performed by the group manager correctly. For some particular group
signature, execution of Judge can be done only after the execution of Open. Therefore, it is
likely that judgement procedure will be executed more often than the opening procedure and
not necessarily on devices with rich computational resources. Nonetheless, high costs of the
judgement procedure have only minor impact on the overall efficiency of the group signature
scheme. In general the computational costs of the judgement procedure are lower than those
of the opening procedure, especially for the schemes that use bilinear maps, in particular for
schemes with (T)VLR property.

9.4.	 Space Complexity : Lengths and Impact of Private
and Public Parameters

Another important indicator of the efficiency of a group signature scheme and its practical
relevance is the space complexity, under which we subsume sizes and lengths of different public
and private parameters used in the scheme. These lengths typically depend on the security
parameter, which is in turn influenced by the applied cryptographic setting and evolves further
over the time. That is why our comparison will be performed based on the amount of group
elements in different cyclic groups that are needed to represent the components. Lengths and
sizes of public and private parameters may vary across different schemes, due to the deployed
cryptographic setting, offered functionality, and security properties of the scheme.

9.4.1. Overview

In Table 9.5 we give an overview of space complexity for various group signature schemes, indi­
cating costs of its components, by measuring the number of needed group elements. We focus
on several such components, namely on the group public key gpk , individual secret signing keys
gsk [i], the length of group signatures σ, the group manager’s secret key gmsk , and the stor­
age costs for the revocation lists RL or update information upd , depending on the underlying
revocation mechanism of the scheme. In schemes with distributed authorities gmsk contains
elements for both the issuing key ik and the opening key ok . In some schemes that deploy com­
plex signatures of knowledge we further estimate lengths of produced group signatures using

Federal Office for Information Security 184

9. Comparison of Group Signature Schemes

appropriate heuristics. We also assume that hash outputs used in signatures of knowledge have
roughly the same length as group elements (which is slightly in favor of the DL and bilinear
map settings, whose group elements are typically shorter than elements in the RSA setting).

Table 9.5.: Space Complexity of Group Signature Schemes

Group Signature Scheme gpk gsk [i] σ gmsk RL/upd

ACJT [16] [5.1] 10 3 ≈ 16 5 m
TX [178] [5.3] 8 4 ≈ 13 3 m
CG [49] [5.4] 9 4 ≈ 9 1 + m —
KY [119] [5.5] 7 3 ≈ 12 4 —

AM [12] [6.1] 9 4 O(k) 2 —
FY [94] [6.2] 10 3 O(k) 2 —

BBS [36] [7.1] 6 2 9 3 + m —
CL [57] [7.2] 8 4 11 7 —
BCNSW [31] [7.3] 4 4 5 2 —
BS [38] [8.2] 3 2 7 m r
NF [146] [8.3] 3 + t 2 12 mt r
BCNSW-VLR [31] [8.4] 4 4 5 2 + m r

all lengths are given in group elements; k — output length of a hash function.
m — number of group members; r — number of revoked members.
t — number of time intervals.

The upper part of the table contains group signature schemes in the RSA setting from Chapter
5, namely the Ateniese-Camenisch-Joye-Tsudik (ACJT), Tsudik-Xu (TX), Camenisch-Groth
(CG), and the Kiayias-Yung (KY) schemes. In this setting the length of a group element
typically corresponds to the length of the RSA modulus N . We observe that the number of
elements for each component of these three schemes is constant, except for the group manager’s
secret key gmsk in the CG scheme. The reason is that we consider a static variant of the
CG scheme, where the group manager has to pre-compute individual secret signing keys for
each group member and store them as long as they are not handed over to respective group
members. For ACJT and TX schemes we observe that their revocation mechanisms require
the group manager to publish update information upd , which contains one group element per
each revoked member. The KY scheme has the shortest group public key, while the CG scheme
outputs shortest signatures.
In the middle part we list two group signatures in the DL setting from Chapter 6, namely the

Ateniese-de Medeiros (AM) and Furukawa-Yonezawa (FY) schemes. In this setting the length
of a group element corresponds to the length of the prime modulus used to define the group.
We observe that while keys remain of constant size, the length of group signatures, although
it does not depend on the number of group members, still depends on the output length of
the hash function used in the generation of the signature of knowledge. From this perspective,
their space complexity is clearly worse than the complexity of schemes that use RSA or bilinear
maps.

Federal Office for Information Security 185

9. Comparison of Group Signature Schemes

The bottom part of the table contains group signatures in the setting of bilinear maps from
Chapter 7, including schemes with verifier-local revocation properties from Chapter 8. These
schemes rely on bilinear groups, that is group elements used to measure space complexity of
these schemes can be either elements of the input groups G1 and G2, or elements of the target
group GT , depending on the specification of the scheme. Our analysis lists the total number
of group elements, without distinguishing between different groups. We remark, however, that
in practice, most compact representation is available for Type 3 pairings (cf. Definition 3.8),
in particular for the elements of the input group G1. Still, group elements in bilinear groups
of prime order, used in all discussed group signature schemes, take typically less space in
comparison to group elements in the RSA setting. We observe that also the number of group
elements used for keys and signatures in group signature schemes in the bilinear map setting is
typically lower in comparison to other settings. The Bichsel-Camenisch-Neven-Smart-Warinschi
(BCNSW) scheme has currently shortest group signatures. In schemes with (T)VLR property
the group manager has to additionally store revocation tokens for all admitted members of
the group. In the NF schemes, which offers TVLR property this amount also depends on the
number of time intervals representing the life time of the scheme. Due to the use of time
intervals the group public key of the NF scheme grows linearly with the number of assumed
intervals.
In practice not all components of a group signature scheme may have the same impact as we

discuss in the following.

9.4.2. Length and Impact of Group Manager’s Secret Keys

The group manager’s secret key gmsk is known only to the group manager and is used to admit
new group members and to open their group signatures. In static schemes gmsk typically
contains individual secret signing keys gsk [i] that have to be computed in advance and then
handed over to the corresponding members i. Once gsk [i] is handed over the group manager no
longer needs to store it. That is, for static CG, BBS, BS, and NF schemes the effective length of
gmsk can be obtained by removing the m group elements dedicated to individual secret signing
keys of group members. Furthermore, group manager’s algorithms will be typically executed on
powerful devices. Therefore, the size of gmsk has only minor impact on the space complexity
of the scheme. We observe that the effective length of gmsk in all group signature schemes is
constant.

9.4.3. Length and Impact of Group Public Keys

The group public key gpk represents all the information required to verify the validity of
generated group signatures and it is used in all algorithms of the scheme. Its length has,
therefore, an important impact on the overall efficiency of the scheme. Clearly, it is desirable
that the length of gpk remains constant, in particular it should be independent from the number
of group members. This property is achieved by all considered group signature schemes, except
for NF, where for each time interval there exists a special group element used in the verification
procedure. In practice, gpk may be accompanied with additional PKI certificates to ensure
binding between gpk and some particular group or organization.

Federal Office for Information Security 186

9. Comparison of Group Signature Schemes

9.4.4.	 Length and Impact of Secret Signing Keys

The secret signing key gsk [i] is typically known only to the corresponding group member i,
who must store it (typically in some protected form) over the whole life time of the group
membership. The length of gsk [i] may become an issue only if it is stored on some device with
low storage resources, e.g. in a smart card or on some cryptographic hardware processor. We
observe that all mentioned group signature schemes have secret signing keys composed of very
few group elements.

9.4.5.	 Length and Impact of Output Group Signatures

As we noticed before, generation of group signatures and their verification belongs to the most
frequently executed operations. Therefore, the length of the group signature σ (together with
the length of gpk) is the most important parameter for the space complexity of the scheme. The
AM and FY schemes in the DL setting have here a clear disadvantage. The number of group
elements in their signatures corresponds to the number of bits used in the output of a hash
function, which is needed to compute their signatures of knowledge. The most compact group
signatures can be obtained today in the setting of bilinear maps, with the BCNSW scheme
being most efficient in that respect.

9.4.6.	 Length and Impact of Revocation Lists and Public Update
Information

Many group signature schemes allow the group manager to revoke the signing abilities of group
members. In schemes with VLR property the group manager adds a revocation token grt [i] to
the revocation list RL whenever i is revoked. In schemes where also signers need to update their
secret signing keys, whenever some member gets revoked, the group manager has to publish
appropriate update information upd . Therefore, lengths of RL or upd should be considered as
another important indicator for the space complexity of group signature schemes. In general,
length of RL in VLR schemes (e.g. BS and BCNSW-VLR) increases proportionally to the
number of revoked members; in TVLR schemes (e.g. NF) this length grows further with the
number of time intervals in which some particular member is considered as revoked; in schemes
that require upd (e.g. ACJT and TX) published information is linear in the total number of
group members since upd is also updated with information about joining group members.

Federal Office for Information Security 187

Part II.

Group Signatures in Practice

189

10.	 Schemes, Parameters, and Test
Environment

Our theoretical analysis and comparison of existing group signature schemes, performed in the
previous part of this work, offers a good indication on how certain schemes would perform in
practice. In this part we extend this analysis and evaluate practical performance of selected
schemes. We consider three group signature schemes that seem to offer a good balance between
functionality and security, and have most promising relevance in practice. We evaluate the per­
formance of the most frequently executed algorithms of these schemes by choosing appropriate
security parameters and measuring timings for their costliest operations.

10.1.	 Selected Group Signature Schemes and Their
Properties

In our performance analysis we will consider three group signature schemes:

•	 The dynamic group signature scheme by Camenisch and Groth(CG) [49] with full revo­
cation support.

•	 The static group signature scheme by Boneh and Shacham (BS) [38] with verifier-local
revocation.

•	 The dynamic group signature scheme by Bichsel et al. (BCNSW-VLR) [31] with verifier­
local revocation.

As motivated through our comparison of reviewed group signature schemes in Chapter 9 the
CG, BS, and BCNSW-VLR schemes seem to offer the better balance between efficiency, func­
tionality, and security, in comparison to the other constructions, especially with their optional
extensions. In this part, more precisely in Chapters 12 to 14, we will detail the specifications
of those schemes by incorporating mechanisms that were previously considered as optional and
by detailing the operations that were previously described in a black-box fashion. Note that
we use the CG group signature scheme with its dynamic extension and full revocation support.
Therefore, its description and properties may differ from those in Part I.
We summarize functionality and properties of the three schemes in Table 10.1. Observe that

all schemes offer support for revocation. The two schemes CG and BCNSW-VLR can handle
dynamic admissions of new group members. The BS scheme distributes generation of secret
signing keys and handling of revocation amongst the two authorities (key issuer and group

191

10. Schemes, Parameters, and Test Environment

Table 10.1.: Functionality and Properties of CG, BS, and BCNSW-VLR Schemes

Verifiable Distributed
Group Signature Scheme Static Dynamic Revocation

Opening Authorities

CG [49] [5.4] . .
BS [38] [8.2] . . VLR
BCNSW-VLR [31] [8.4] . . VLR

manager). The BCNSW-VLR scheme offers mechanisms to open group signatures and identify
signers in a verifiable way.
In Table 10.2 we recall the different security properties offered by resulting specifications.

Observe that dynamic CG and BCNSW-VLR schemes offer traceability against insiders, which
is the strongest form of traceability dynamic schemes can offer. The BS and BCNSW-VLR
schemes achieve insider anonymity, which offers a better trade-off between security and ef­
ficiency and is also sufficient for most applications. Notably all three schemes achieve the
highest level of full non-frameability. The CG scheme works in the RSA setting, whereas BS
and BCNSW-VLR require bilinear maps. Security properties of all three constructions were
proven in the Random Oracle Model (ROM).

Table 10.2.: Security Properties of CG, BS, and BCNSW-VLR Schemes

Scheme Setting Anonymity Traceab. Non-Fra. Assumptions

CG [49] [5.4] RSA full insider full ROM, DL, SRSA
BS [38] [8.2] BM insider full full ROM, q-SDH, DLIN, DL
BCNSW­ [31] [8.4] BM insider insider full ROM, LRSW, SDLP,
VLR DDH, DL

In Table 10.3, preceding the detailed specification of the scheme, we highlight their compu­
tation costs for the operations that should be executed by group members and verifiers, since
computations on the group manager’s side are less relevant in practice and are likely to be
executed on powerful computing devices, e.g. servers. Our analysis of practical performance,
however, will further be limited to the timings of the signature generation GSign and verifica­
tion GVrfy algorithms. These are the most frequently used algorithms and their performance
has the most significant impact on the schemes’ practicality. In the CG scheme we will con­
sider modular exponentiations, whereas in BS and BCNSW-VLR schemes we will refine the
costs by considering pairing operations and exponentiations in the three different algebraic
groups (input and target groups) that define the applied bilinear map setting. The signing
procedure in all three constructions requires constant amount of work. However, since all three
schemes support revocation, the running time of their verification algorithms remains linear
in the number of revoked users, which in turn raises further scalability questions. The linear
amount of work is also present in the Judge algorithm provided by the BCNSW-VLR scheme
due to its implicit use of the verification procedure. The joining procedure is only offered by

Federal Office for Information Security 192

10. Schemes, Parameters, and Test Environment

CG and BCNSW-VLR schemes, whereby JoinU is the corresponding (interactive) algorithm on
the member’s side. However, a member performs JoinU only once during its admission and the
costs of that algorithm become less significant in practice.

Table 10.3.: Computational Costs for Members and Verifiers in CG, BS, and BCNSW-VLR
Schemes

Group Signature Scheme JoinU GSign GVrfy Judge

CG [49] [5.4] 10E 13E 13E + rE —
BS [38] [8.2] — 8E + 3P 8E + 6P + rP —
BCNSW-VLR [31] [8.4] 15E + 3P 4E + 3P 2E + 5P + rP 3E + 5P + costVrfy

+costGVrfy

E — modular exponentiations; P — pairing evaluations; r — number of revoked members.
costVrfy — costs of (ordinary) signature verification; costGVrfy — costs of GVrfy.

As part of our performance analysis and comparison of the three schemes we also consider
the required amount of space to store the different parameters of these schemes. Of prime
interest for practice are the lengths of group public keys gpk , individual secret signing keys
gsk [i], output group signatures σ, and the amount of revocation information that has to be
published by the group manager, i.e., the length of revocation lists RL in VLR schemes and
the length of the public update information upd in the CG scheme. On the group manager’s
side we can count the length of the group manager’s secret key gmsk , including the size of the
(initially secret) registration information reg , which is used by the group manager to identify
the signers.

We observe that for the purpose of better protection it might be desirable to store secret
keys in some tamper-resistant cryptographic hardware chip. Whether this is possible or not will
certainly depend on the resulting length of those keys. In Table 10.4 we give an initial overview
of the mentioned lengths, measured in the number of components (e.g. group elements). We
will refine this table in our analysis later by measuring the required storage complexity in bits,
depending on the concrete choice of security parameters for the utilized cryptographic settings.
The selection process of appropriate security parameters is discussed in the next section.

Table 10.4.: Space Complexity of CG, BS, and BCNSW-VLR Schemes

Group Signature Scheme gpk gsk [i] σ gmsk RL/upd

CG [49] [5.4] 11 6 11 1 + m 2r
BS [38] [8.2] 3 2 7 m r
BCNSW-VLR [31] [8.4] 4 4 5 2 + m r

m — number of group members; r — number of revoked members.

Federal Office for Information Security 193

10. Schemes, Parameters, and Test Environment

10.2. Choice of Security Parameters

10.2.1. General Overview

Security of group signature schemes is proven in the computational setting (cf. Section 1.5)
in dependency of the (global) security parameter 1κ , κ ∈ N. In practice κ is a bit-length
and remains valid for a certain period of time, assuming that existing cryptanalytic potential
does not experience a significant “break-through” in that period. This bit-length varies for
different cryptographic settings and its estimation takes into account existing lower bounds of
cryptanalytic algorithms.
The estimation of the security parameter is often performed using heuristics that further take

into account possible progress in technology, e.g., increase of computing power, often measured
in “million instructions per second” over a year of computation (MIPS year), yet also criticized
for not offering exact estimates [172], and the actual cost of the cryptanalytic attack, i.e. costs
for building a special-purpose architecture that would solve the basic hard problem behind the
cryptographic setting (e.g., factorization of RSA moduli or computation of discrete logarithms).
Security level of cryptographic settings based on hard problems from number theory are of­

ten defined in relation to the security level of symmetric primitives, where security parameter
represents the acceptable bit-length of secret keys to withstand brute force attacks. More gen­
erally, a κ-bit security level for some cryptographic operation is given for some period of time
and typically assumes that it is practically infeasible to perform 2κ executions of that operation
with computing power that will become available during that period. A lot of work in the liter­
ature, e.g., [128, 127, 104, 92], has been done on establishing the heuristics for the appropriate
choice of security parameters in different cryptographic settings. Meanwhile, various agencies
[152, 153, 10, 32] and research groups [87] provide their own recommendations for the concrete
choice of security parameters and their validity periods, sometimes also distinguishing amongst
different levels of protection such as “secret” or “top secret” [152]. A nice overview of available
recommendations with an interactive tool to assist in the selection process can be found at
www.keylength.com.
In our performance measurements of the three mentioned group signature schemes we will

mostly rely on recommendations of the German Federal Network Agency (BNetzA, www.
bundesnetzagentur.de) and German Federal Office for Information Security (BSI, www.bsi.
bund.de), and of the European Network of Excellence in Cryptography (ECRYPT, www.
ecrypt.eu.org). These recommendations are summarized in Table 10.5 and differ mainly
in the length of the RSA modulus, i.e. the ECRYPT recommendation suggests modulus length
of 3248 bits in comparison to 2048 bits recommended by BNetzA/BSI. We stress that the indi­
cated lengths correspond to security levels of 100-bits [32] resp. 128 bits [87], which is generally
believed to offer sufficient protection in the mid-term.
That is, for the RSA modulus N = pq we will provide measurements with respect to |N | =

2048 bits and |N | = 3248 bits. Since the cryptographic setting of bilinear maps currently uses
instantiations that rely on elliptic curve cryptography, at least 250 bit-length must be chosen
for the prime order of bilinear groups. Since hash functions are often used in the construction
of group signatures, we will assume that the typical length of a hash value is 256 bits. This
general set of parameters will allow us to analyze and compare performance and scalability of

Federal Office for Information Security 194

www.keylength.com
www.bundesnetzagentur.de
www.bundesnetzagentur.de
www.bsi.bund.de
www.bsi.bund.de
www.ecrypt.eu.org
www.ecrypt.eu.org

10. Schemes, Parameters, and Test Environment

Table 10.5.: Recommended Parameters for 100- to 128-bit Security

Agency RSA Setting DL Setting Elliptic Curves Hash
Modulus Size Order Z∗

P Order G ⊂ Z∗
P Order G

BNetzA/BSI [32] 2048 bits 2048 bits 256 bits 250 bits 256 bits
ECRYPT [87] 3248 bits 3248 bits 256 bits 256 bits 256 bits

the mentioned group signature schemes at the assumed security level of 100 resp. 128 bits.

10.2.2. Security Parameters for QR(N) Groups

The group signature scheme by Camenisch and Groth (CG) [49] uses the group of quadratic
residues modulo a safe RSA modulus N . This group is denoted by QR(N). An appropriate
safe RSA modulus N of length κ can be generated as the product of two safe prime numbers

' ' ' ' p and q, each of bit-length lκ/2J, whereby p = 2p + 1 and q = 2q + 1 with p , q being two
randomly chosen prime numbers, each of bit-length lκ/2J−1. In order to choose an appropriate
generator g of the QR(N) group one first picks some random integer a ∈ Z∗ satisfying condition N

gcd(a ± 1, N) = 1 and defines g = a2 mod N . The order of the QR(N) group is given by the
' ' xproduct p q . In the CG scheme modular exponentiations g mod N are mostly performed

with exponents x, whose length can be approximated with lκ/2J bits.
In our measurements we will use two different sizes of RSA moduli — 2048 bits and 3248

bits — to match the recommendations from [32, 87]. By fixing the modulus size we implicitly
define lengths of further security parameters behind the QR(N) setting of the CG scheme. The
resulting set of parameters is summarized in Table 10.6.

Table 10.6.: Parameter Lengths in QR(N) Setting

Parameter Lengths

modulus N 2048 bits 3248 bits
prime factors p, q 1024 bits 1624 bits
generator, element of QR(N) 2048 bits 3248 bits
exponent x 1024 bits 1624 bits

10.2.3. Security Parameters for Z∗ GroupsP

Another group used in the algorithms of the Camenisch-Groth (CG) scheme [49] is a cyclic
subgroup of integers Z∗

P of prime order Q, where the length of Q defines the security parameter
length κ, and P is a prime number. The CG scheme uses this group in combination with
QR(N) and assumes that parameters of both groups are chosen such that factoring N is as
hard as the computation of discrete logarithms in Z∗

P .
Following the recommended parameter lengths, we will assume that |P | = |N | and perform

two types of measurements for the security level of 128 bits: our first measurements will use

Federal Office for Information Security 195

10. Schemes, Parameters, and Test Environment

Table 10.7.: Parameter Lengths in Z∗
P Setting

Parameter Lengths

modulus P 2048 bits 3248 bits
generator, element of Z∗

P 2048 bits 3248 bits
exponent x 256 bits 256 bits

|P | = 2048 bits and |Q| = 256 bits, while our second measurements will assume that |P | = 3248
bits and |Q| = 256 bits. Note that the length of the prime order Q implicitly defines the length of

xthe typical exponent x ∈ ZQ in a modular exponentiation operation g mod P . The resulting
bit-lengths of Z∗

P parameters used in our measurements are summarized in Table 10.7.

10.2.4.	 Security Parameters for Bilinear Groups with Type-2
Pairing

The group signature schemes of Boneh and Shacham (BS) [38] and Bichsel et al. (BCNSW­
VLR) [31] can be implemented over bilinear groups (G1, G2) that provide a bilinear map e :
G1 × G2 → GT of Type-2. Note that groups G1 and G2 are called input groups, whereas
GT is the target group. All three groups G1, G2, and GT have the same prime order Q of
length κ. The generator of GT is given by gT = e(g1, g2), where g1 and g2 are generators of G1

and G2, respectively. Bilinear maps of Type-2 assume existence of an efficiently computable
homomorphism ψ : G2 → G1 with g1 = ψ(g2) (cf. Definition 3.8). Despite the same order, the
three groups differ in the representation of their elements. In the case of Type-2 pairings – as
used in modern cryptography – the first input group G1 is typically defined as a subgroup of
points of an elliptic curve E over a (prime or binary) finite field Fq, q ∈ N a power of a prime,
that is G1 ⊂ E(Fq). The second input group G2 is given as a subgroup of E(Fqk), which denotes
the group of points of E over an extension field Fqk , for some embedding degree k ∈ N. It is

x x ximportant to notice that exponentiations g1 , g2 , and gT depend on the actual group operation
in the respective input or target group.
Parameters of the cryptographic setting in Type-2 bilinear maps are chosen such that the

Discrete Logarithm problem in groups E(Fq), E(Fqk), and F∗
qk is assumed to be hard. In par­

ticular, under existing cryptanalytic techniques, if Q is the order of the largest prime-order
subgroup of E(Fq) then the size qk of the extension field must be significantly larger than Q.
With the increasing size of qk, or alternatively, with the increasing embedding degree, compu­
tations in G2 and GT become slower and their elements require more space for representation.
It is challenging to find pairing-friendly curves E that would admit small embedding degree
k in combination with the sufficiently large prime-order subgroup in E(Fq). We observe that
a typical embedding degree k used in current pairing-based cryptographic settings ranges be­
tween 1 and 12. At this point we refer the reader to [92] for a detailed exposition of different
parameters and techniques related to the choice of suitable parameters for cryptographic use of
bilinear maps. We remark that pairing-based cryptography is still an ongoing area of research
and that the entire potential behind efficient implementations of cryptographic algorithms in

Federal Office for Information Security 196

10. Schemes, Parameters, and Test Environment

this setting has not been explored yet. This also means that our measurements with regard to
the group signature schemes from [38, 31] that we will perform based on existing libraries for
pairing-based cryptography should not be taken as a benchmark.
In our analysis, we will use specially chosen parameters, as summarized in Table 10.8. These

Table 10.8.: Parameter Lengths in Type-2 Bilinear Group with k = 6

Parameter Length

size of q = |Fq| 347 bits
size of qk = |F k | 2082 bits q

size of group order Q 332 bits

size of elements of G1 360 bits

size of elements of G2 1064 bits

size of elements of GT 2112 bits

parameters reflect the view from [92] for the case where κ = |Q| = 332 and embedding degree
k = 6. The size of the underlying finite field Fq is |q| = 347 bits. We motivate our choice with
the availability of a pairing-friendly curve with such parameters in the open source library for
pairing-based cryptography that will be used in our practical tests (cf. Section 10.3.2).
In Table 10.8 we reproduce the sizes of elements in G1, G2, GT as reported by this library. The

reason why these lengths do not perfectly coincide with the expected values (e.g., element size in
G1 is 360 bits instead of expected 347 bits) is that, when serializing the internal representation
of elements to a sequence of full bytes, the library introduces a marginal padding between 8
and 15 bits. Moreover, for the specific curve that we chose, elements of G1, G2 are stored in
a compressed form that saves roughly 50% (75%) of storage space (precisely: elements of G1

are encoded in about q bits instead of 2q bits, and elements of G2 are encoded in about 3q bits
instead of 2kq = 12q bits).

10.3. Test Environment, Utilities, and Methodology

10.3.1. Reference Platforms

In order to estimate the expected performance of the three group signature schemes in practice
several experiments were performed. These experiments involved two reference platforms that
differ in their characteristics as detailed in the following.

Reference platform “PC”. Our first reference platform, denoted for simplicity as “PC”, is
a single core of a Lenovo X60s laptop, equipped with an Intel Core Duo LV L2400 1.66 GHz
processor. The libraries and benchmarks for this platform are compiled with the GCC [99] in
its version 4.4.4 and 32-bit mode.

Federal Office for Information Security 197

10. Schemes, Parameters, and Test Environment

Reference platform “Smartphone”. Our second reference platform, denoted for simplicity
as “Smartphone”, is the small handheld device HTC Desire, equipped with an 1 GHz Scor­
pion processor (Qualcomm QSD8250 Snapdragon chipset). The libraries and benchmarks for
this platform are cross-compiled with the GCC [99] in its version 4.4.3, using the arm-linux­
androideabi-gcc of the Android NDK r6b [9] for the ARM instruction set. The used smartphone
runs Android 2.2 with Kernel 2.6.32.15-g2633d94.

10.3.2. Utilized Libraries

In order to estimate practical performance of group signature schemes from [49, 38, 31] the ref­
erence platforms were used to measure timings of the most significant cryptographic operations
that appear in the corresponding algorithms of those schemes.
For this purpose we utilize several libraries, freely available on the Internet. In particu­

lar, big integer operations are implemented using the optimized GNU Multi-Precision Library
(GMP) [101] in its version 4.3.2 for our PC reference platform and in version 5.0.2 for our
Smartphone platform. For the evaluation of operations in the setting of bilinear maps we de­
ployed Stanford University’s Pairing-Based Cryptography (PBC) library [157] in version 0.5.12,
which links against the GMP library to perform the required big integer operations and is often
used for “proof of concept” implementations of cryptographic applications. Both libraries as
well as our test routines are written in C and/or Assembler.

10.3.3. Test Methodology and Heuristics

Our analysis of performance and scalability of the three group signature schemes is based on
the following methodology that deploys several heuristics. First, we focus mainly on algorithms
with the highest practical relevance, namely on the signature generation and verification pro­
cedures, whereby for the latter we also include performance analysis for identifying signatures
produced by revoked group members. As motivated in Section 9.3 the signing and verification
procedures belong to the most frequently executed algorithms and their performance counts
as the most dominant factor in the practical deployment of group signature schemes. We
nonetheless briefly evaluate performance of the remaining algorithms for group management
and (verifiable) opening that are executed less often than signing and verification procedures.
Further, our performance analysis does not make use of complete implementations. Instead,

we perform a preliminary analysis in Chapter 11, where we specify dominant operations that
are used in the algorithms of the three schemes and measure their timings on our reference plat­
forms. For pairing-based group signatures we also take into account state-of-the-art timings
that have been reported in the literature, for which, however, no implementation details were
disclosed into the public domain or documentation was not sufficient to reproduce the results.
The additional use of literature sources is meaningful since existing open-source libraries for
cryptographic pairings are not optimal and admit mostly high-level “proof of concept” imple­
mentations. We will apply timings from the literature to estimate the resulting costs of the
most frequent signing and verification procedures in each of the three group signature schemes
in a heuristic way; namely, by counting the total amount of dominant cryptographic and big
integer operations in those algorithms and by calculating their resulting execution time.

Federal Office for Information Security 198

10. Schemes, Parameters, and Test Environment

We consider our heuristic approach as suitable for two main reasons: first, expensive cryp­
tographic operations, such as modular exponentiations and pairing evaluations, admit many
optimization strategies, speeding up their performance. The optimization potential depends
on the context in which the operations are executed and may further be triggered by the ac­
tual application in which the cryptographic scheme is deployed. Our heuristic approach does
not consider computational gains that may result from any optimized implementations of the
deployed operations; although, along the lines, we mention some optimization strategies and
provide corresponding references. On the other hand, our approach does not take into account
the additional costs, contributed by other big integer operations such as additions and multipli­
cations or by cheap cryptographic operations such as hash functions that are used in the signing
and verification procedures. These costs, however, would introduce an additional overhead and
by this decrease the gain obtained from optimization. More importantly, our heuristic approach
seems fully sufficient to answer the central question of this work, namely whether the state-of­
the-art group signatures are amenable to practical use with modern computing technology.

Federal Office for Information Security 199

11.	 Dominant Operations and
Measured Timings

The group signature schemes from [49, 38, 31] require different cryptographic settings: The
CG scheme [49] combines QR(N) and Z∗

P groups, whereas BS [38] and BCNSW-VLR [31]
require pairings, whereby Type-2 pairing is mandatory for the BS scheme, while BCNSW-VLR
scheme may also be implemented with Type-3 pairings. In the following we describe our time
measurements for the most dominant operations in QR(N), Z∗

P , and bilinear groups of Type-2.
These timings will be used as a basis for the estimation of running times of the most significant
algorithms of the three group signature schemes. We remark that timings were measured on
our reference platforms using test routines in which each operation was performed sufficiently
many times to exclude variances. Moreover, each operation was tested with randomly generated
instances (e.g. base elements and exponents) and the amount of repetitions was chosen such
that generation of these random instances had only a negligible impact on the resulting time
per operation.

11.1.	 Computation Costs in QR(N) Groups

The most dominant operation in QR(N) groups is modular exponentiation. In Table 11.1
we provide time measurements of this operation. These timings will be used later to evaluate
performance of the CG scheme. They were measured on our reference platforms, PC and smart­
phone, using the test source code written in C and compiled with GCC. The numbers represent
the average runtime of one modular exponentiation in a QR(N) group with a randomly chosen
but fixed safe RSA modulus N and multiple randomly chosen base elements g and exponents
x of the given length. To measure an appropriate average runtime per operation, the runtime
of 200 (for 2048-bit modulus) resp. 50 (for 3248-bit modulus) exponentiations have been mea­
sured and averaged. The amount of 200 resp. 50 repeated exponentiations turned out to be
sufficient to prevent variances on our reference platforms.

Table 11.1.: Timings of Operations in QR(N) Groups

Operation Modulus Exponent Time (PC) Time (Smartphone)

modular exponentiation 2048 bits 1024 bits 24.0 ms 60.7 ms
(gx mod N) 3248 bits 1624 bits 125.2 ms 214.7 ms

The algorithms of the CG scheme sometimes use multi-base exponentiations in QR(N) groups
x1 xnof the form g1 · · · gn with different bases gi and exponents xi. These operations bear further

201

11. Dominant Operations and Measured Timings

optimization potential to reduce the execution time in comparison to n single-base exponentia­
tions gi

xi for all i ∈ [1, n]. Another optimization potential arises in case where several exponen­
tiations have to be performed using the same base g. In this case there exist efficient algorithms
that use pre-computation to further speed-up computation of multiple exponentiations with the
same base. Here we refer to the survey by Gordon [102] on available algorithms for optimizing
the computation of modular exponentiations in different cryptographic settings. However, we
will not consider any of these optimization in our analysis, as the expected improvement would
not be significant for a more general statement about the practicality of the CG scheme.

11.2.	 Computation Costs in Z∗ GroupsP

The most dominant operation in Z∗
P groups is modular exponentiation, the exponent however

is shorter than in the QR(N) setting. In Table 11.2 we provide time measurements of this
operation. These timings will be combined with those for QR(N) groups and used later to
evaluate performance of the CG scheme. They were measured on our reference platforms,
PC and smartphone, using the test source code written in C and compiled with GCC. The
numbers represent the average runtime of one modular exponentiation in a Z∗

P group with a
randomly chosen but fixed prime modulus P and multiple randomly chosen base elements g and
exponents x of the given length. To measure an appropriate average runtime, the runtime of 500
(for 2048-bit modulus) resp. 300 (for 3248-bit modulus) exponentiations have been measured
and averaged. The amount of 500 resp. 300 repeated exponentiations turned out to be sufficient
to prevent variances on our reference platforms.

Table 11.2.: Timings of Operations in Z∗
P Groups

Operation Modulus Exponent Time (PC) Time (Smartphone)

modular exponentiation 2048 bits 256 bits 6.3 ms 16.0 ms
(gx mod P) 3248 bits 256 bits 21.0 ms 35.4 ms

We remark that Z∗
P group admits the same optimization tricks with regard to multi-base

x1 xnexponentiations g1 · · · gn and multiple exponentiations with the same base g as mentioned
in the previous section. Again the expected improvement would not be significant for a more
general statement about the practicality of the CG scheme and so we will not consider any of
these optimization in our analysis.

11.3.	 Computation Costs in Bilinear Groups with
Type-2 Pairings

The reference platform was further used to measure timings of most significant operations in
the setting of bilinear groups (G1, G2) with a Type-2 pairing e : G1 ×G2 → GT . These measure­
ments were performed for the selected pairing-friendly curve and bilinear groups. In addition to
the actual evaluation of the bilinear map e, significant costs arise for exponentiation operations

Federal Office for Information Security 202

11. Dominant Operations and Measured Timings

in the input groups G1 and G2 and in the target group GT . Although all groups have the same
prime order Q, the representation of the respective group elements and the actual specification
of the exponentiation operation differs from group to group. In particular, exponentiation costs
in G2 are much higher in comparison to those in other groups, whereby exponentiations in G1

are most efficient. Combined with the fact that elements in G1 have the shortest representation,
it is desirable for the group signature scheme to mitigate its computation and storage costs such
that the costly operations and signature components can be accounted to G1 rather than to
other groups. In Table 11.3 we summarize our measurements for the operations that will be
later used to evaluate performance of the BS and BCNSW-VLR schemes.

Table 11.3.: Timings of Operations in Bilinear Groups with Type-2 Pairing

Operation Element Size Exponent Time (PC) Time (Smartphone)

exponentiation in G1 360 bits 332 bits 10.7 ms 24.0 ms

exponentiation in G2 1064 bits 332 bits 92.6 ms 297.4 ms

exponentiation in GT 2112 bits 332 bits 24.5 ms 80.7 ms

pairing evaluation e(·, ·) — — 91.8 ms 283.2 ms

These measurements were obtained on our reference platforms, PC and smartphone, using the
PBC library [157], which provides routines for elliptic curve generation, elliptic curve arithmetic,
and pairing computations. This library is written in C and links against the GMP library
[101]. The PBC library offers implementations of different bilinear map settings, covering both
symmetric (i.e., G1 = G2) and asymmetric (i.e., G1 = G2) pairings. Specifically, we opted for
(asymmetric) MNT curves discovered by Miyaji, Nakabayashi, and Takano [144]. These curves
have the embedding degree k = 6 and thus offer a good balance between performance and size
of element representation.
The PBC library provides implementation of MNT curves. For our measurements we used a

concrete MNT curve, denoted D476971 in the PBC classification. This curve is defined over a
prime field Fq for a 347-bit prime number q. Considering the size of the prime field Fq and the
embedding degree of the elliptic curve, the target group GT is a subset of Fq6 , which in turn
is a field of approximately 2082 bits. See also Section 10.2.4 for a discussion on the element
sizes for groups G1, G2, and GT , as reported by PBC and reflected in Table 11.3. We measured
timings on our reference platforms, PC and smartphone, using the test source code written
in C and compiled with GCC. Timing entries in Table 11.3 represent the average runtime of
the performed operations using the above MNT curve with multiple randomly chosen base
elements g1 ∈R G1, g2 ∈R G2, gT ∈R GT , and exponents x of the appropriate length. These
timings correspond to the average runtime of 1000 (in G1) resp. 100 (in G2) resp. 400 (in GT)
exponentiations and 100 pairing evaluations. These different amounts of repetitions for each
operation turned out to be sufficient to remove variances on our reference platforms.
We observe that implementations in the PBC library are not necessarily optimized and that

the library does not include support for all types of curves and parameters that can be found
in the literature. Therefore, our timings obtained with this library should also be used with

Federal Office for Information Security 203

11. Dominant Operations and Measured Timings

care. In particular, computations behind the pairing-based BS and BCNSW-VLR schemes,
when measured with other possibly optimized implementations of pairings, are likely to result
in a significantly better performance gain. However, it is still helpful to compare estimated
costs for these group signature schemes based on non-optimized, yet freely available pairing
implementations with estimated costs of the CG group signature scheme on the same reference
platform. Nonetheless, in our performance analysis of the BS and BCNSW-VLR schemes we
will also use timings obtained from other sources as we will discuss in the next section.
Finally, note that in some cases exponentiations in the input and target groups can further be

optimized. In particular, faster exponentiation algorithms for multi-base exponentiations and
for multiple exponentiations with the same base elements via pre-computation can be applied in
all three groups. In addition to the survey by Gordon [102], we refer to the book of Hankerson,
Menezes, and Vanstone [106] for the description of various exponentiation algorithms in elliptic
curve cryptography that can also be applied to the input pairing groups. In addition, the
bilinearity property of the pairing operation e : G1 ×G2 → GT (cf. Definition 3.7) admits further
optimizations in the computation of pairing products. For example, the product of pairings

x1 x2 xne(g1, g 2)e(g1, g 2) · · · e(g1, g 2) can be computed at the cost of only one pairing operation as
x1 xne(g1, g 2 · · · g2).

11.3.1. Timings of Type-2 Pairing Evaluations in the Literature

Since the open-source PBC library does not necessarily reflect the state-of-the-art in efficient
implementation of pairings, it is advisable to also address implementations and their timings
based on other sources. In Table 11.4 we provide an overview of time measurements for various
pairing computations from the existing literature. These measurements have been performed
on different computing platforms and in various contexts such as hardware-based timings on
FPGAs or software-based timings on PCs and in smartcards. In this overview we focus on
timings for the security level of (approximately) 128 bits to achieve comparability with the
PBC library-based measurements on our reference platforms. The only exception are the listed
measurements on smartcards that are available for the reduced security level of 80 bits. In
general, all timings mentioned in Table 11.4 were performed using optimal ate pairings, except
for the results of Scott et al. [168] on smartcards, for which regular ate pairings have been used.
The fastest pairing evaluations were measured on FPGAs, independently in the work of

Duquesne and Guillermin [86] and by Yao et al. [187], where timings of 1 ms or even less are
possible. The majority of timing results on PCs lie in the range between 1 ms and 10 ms. These
measurements were partially carried out as a comparison to hardware-based implementations.
Observe, however, that measurements on PCs were made on computing platforms with a much
higher clock speed, in comparison to the rates that are feasible on FPGAs. Therefore, it is
evident (and not really surprising) that hardware-based implementations of pairing operations
outperform their implementations in software. The measured time of about 50 ms for a pairing
evaluation in the work of Acar et al. [7] is especially interesting when looking at the rising
popularity of smartphones. Their measurements were performed on the ARM architecture
that prevails today in embedded and mobile devices. With a significant loss in performance,
far behind the measurements on FPGAs and PCs, follow the timing results on smartcards. In
particular, pairing evaluations by Scott et al. [168] were performed using Phillips HiPerSmartTM ,

Federal Office for Information Security 204

11. Dominant Operations and Measured Timings

which is an instantiation of the SmartMIPSTMarchitecture, and take between 380 ms and over
one second, depending on the processor’s clock speed.

Table 11.4.: Timings of Type-2 Pairing Evaluations from the Literature

Platform Source Context Security Time

Xilinx Virtex-6 XC6VLX240T-2 @ 250 MHz [187] FPGA ≈128 bits 0.66 ms
Stratix III (EP3SE50) @ 165 MHz [86] FPGA 128 bits 1.15 ms
Stratix II (EP2S30) @ 154 MHz [86] FPGA 128 bits 1.23 ms
Altera Cyclone II (EP2C35) @ 91 MHz [86] FPGA 128 bits 2.09 ms

AMD Phenom II X4 955 @ 3.2 GHz [145] PC ≈128 bits 1.55 ms
Intel Core 2 Quad Q9550 @ 2.8 GHz [145] PC ≈128 bits 1.58 ms
Intel Core 2 Quad Q6600 @ 2.4 GHz [145] PC ≈128 bits 1.86 ms
Intel Xeon E5504 @ 2.0 GHz [145] PC ≈128 bits 2.37 ms
AMD Athlon 64 X2 3800+ @ 2.0 GHz [145] PC ≈128 bits 5.48 ms
Intel Core 2 E6600 @ 2.4 GHz (64bit) [7] PC 128 bits 6.30 ms
Intel Core 2 E6600 @ 2.4 GHz [7] PC 128 bits 11.72 ms
Dual-Core Cortex A9 ARM @ 1.0 GHz [7] PC 128 bits 54.19 ms

Phillips HiPerSmartTM@ ˜36 MHz [168] Smartcard 80 bits 380.00 ms
Phillips HiPerSmartTM@ 21 MHz [168] Smartcard 80 bits 590.00 ms
Phillips HiPerSmartTM@ 9 MHz [168] Smartcard 80 bits 1210.00 ms

Federal Office for Information Security 205

12. Specification and Performance of

the Camenisch-Groth Scheme

12.1.	 Detailed Specification of the Camenisch-Groth
Scheme

In this section we specify the core algorithms and protocols of the dynamic Camenisch-Groth
(CG) group signature scheme with full revocation support. Our description follows the speci­
fication from [49].

We start with the description of the security parameters deployed in the CG scheme and pro­
vide recommendations for their lengths. The CG scheme uses the following lengths: c, e, s, E ,
Q, N , P , all of which depend polynomially on the security parameter κ. In addition, these
lengths must satisfy the following conditions:

•	 Let Hash1 : {0, 1}∗ → {0, 1}Yc and Hash2 : {0, 1}∗ → {0, 1}Yc denote hash functions,

•	 for every integer a, an integer r of the length |a| + s can be chosen randomly, so that
a + r and r are statistically indistinguishable,

• e is large enough to assign different numbers to all members and to make Ei prime, and

•	 the following two relations must hold:

c + e +	 s + 1 < Q and c + Q + s + 1 < E < N /2.

These conditions stem partly from the specification of the Camenisch-Lysyanskaya signature
scheme from [55, 133], which is used by the algorithms of the CG scheme. The length of the
safe RSA modulus N , denoted N determines the hardness of the factorization problem in the
QR(N) group, which is used in the CG scheme, and is therefore fixed to 2048 bits resp. 3248
bits according to the desired security levels, following the recommendations of BNetzA/BSI [32]
resp. ECRYPT [87]. Since the hardness of the factorization problem of an N -bit RSA modulus
and the hardness of the discrete logarithm problem in subgroups of Z∗

P should be kept at the
same level, the length of the prime modulus |P |, denoted by P , should also be fixed to 2048
bits resp. 3248 bits.
The lengths e and Q result from further constraints put on the Camenisch-Lysyanskaya

signature scheme. Here the length e must ensure that the group manager can choose an
independent prime number Ei for each prospective group member i. On the one hand, e

207

12. Specification and Performance of the Camenisch-Groth Scheme

should be set such that the appropriate choice of Ei becomes feasible even for very large groups
(e.g., several millions of members), and on the other hand, e must be sufficiently large so that
the probability of guessing an Ei becomes negligible. To satisfy both conditions e must be set
to at least 80 bits.
The length s stands for the parameter that defines statistical closeness in utilized NIZKPoK

proofs; this parameter, too, must be set to at least 80 bits. The CG scheme utilizes crypto­
graphic hash functions and the length of their outputs, denoted by c, should be set to 256 bits
to achieve the security level of 128 bits, as recommended in [32, 87]. This choice, in combina­
tion with the above constraints, leads to the lower bound of 418 bits for the length Q, which
can be increased at the cost of larger signatures and higher amount of work for the algorithms
of the CG scheme. Finally, the above constraints imply that the length E , which defines the
length of each later chosen prime number Ei and is also inherent to the Camenisch-Lysyanskaya
signature scheme, may vary between 580 bits and 1024 bits resp. 1624 bits (depending on the
modulus size N). In our measurements we will use an average value of E = 756 bits.
Our choice of security parameters for the CG scheme to achieve mid-term protection can thus

be summarized as follows: based on the recommendations of BNetzA/BSI [32] and ECRYPT
[87] we will consider two cases, namely

N = P = |N | = |P | = 2048 bits and N = P = |N | = |P | = 3248 bits

and recommend further parameters to be set as follows:

E = 756 bits, Q = 418 bits, c = 256 bits, e = s = 80 bits.

We are now able to specify the core algorithms and protocols.

Key generation. The key generation algorithm GKg on input 1κ performs the following steps:

1. Compute safe RSA	 modulus N and its factorization p and q using the RSAGen(1YN)
algorithm from Section 3.2.1.

2. Choose random elements a, h, f, w ∈R QR(N).

3. Compute g = hξ mod N using ξ ∈R ZYN /2 .

4. Choose random primes Q, P of length Q, P with Q|P − 1.

5. Pick XG, XH with G = F XG mod P and H = F XH mod P where F ∈R Z∗ of∈R ZQ	 P

order Q.

6. Output (gpk , gmsk , reg) such that:

•	 group public key gpk = (N, a, g, h, F, G, H, P, Q, w, f)

•	 group manager’s secret key gmsk = (gpk , p, q, XG)

•	 registration list reg is initially empty.

Federal Office for Information Security 208

12. Specification and Performance of the Camenisch-Groth Scheme

It is assumed that key generation is performed in a trusted way. Otherwise a zero knowledge
proof of knowledge of the value ξ can assure the correctness of the group public key. The
additional value of w allows the user to chose his secret xi on his own and allows him to prove
knowledge of a root w in the signing process.

Join protocol. The join protocol Join is executed between the group manager with input
gmsk = (gpk , p, q, XG) and a prospective member i with input gpk = (N, a, g, h, F, G, H, P, Q, w,
f). It proceeds as follows:

'	 Gxi1. Member i picks random xi, si ∈R ZQ and ri ∈R ZN , computes Yi = mod P and
lxi hrCi = g i mod N and sends (Yi, Ci, si) to the group manager together with (c, sx, sr)

representing

' lxi hrNIZKPoK xi, r : = Gxi mod P and = gi Yi	 Ci mod N
i

computed as follows:

• Choose rxi ∈R ZQ and rr ∈R ZN at random.
 l
i

• Compute R1 = Grxi mod P and R2 = grxi h
r lr mod N .
i

• Compute c = Hash1(gpk , Yi, Ci, R1, R2).
' • Compute sxi = rxi + cxi mod P and sr + cr mod N .
l = rrl ii i

2. The group manager verifies the NIZKPoK as follows:
sx hsr C−c• Compute R ' = Gsx Y −c mod P and R ' = g mod N .1 i	 2 i

• Check that c =
?
Hash1(gpk , Yi, Ci, R 1

' , R ' 2), otherwise abort.

Then the group manager proceeds as follows:

•	 Pick ei ∈R {0, 1}Ye such that Ei = 2YE + ei is prime.

E−1

i• Compute wi = w mod N .

''	 i)E
−1
i• Select ri ∈R ZYe	 and compute yi = (af si Cih

rll mod N using the factors p and q.

• Define reg [i] = (wi, Yi, Ei, si) and send (wi, yi, Ei, r i
'') back to member i.

? ll	 ?
3. Member i verifies that yEi = af si Cih

ri mod N and that wi
Ei = w mod N and aborts if

the check fails. Finally, member i stores gsk [i] = (gpk , wi, xi, ri, yi, ei, si) with ri = ri
' + ri

''

and ei = Ei − 2YE as his secret signing key.

Note that the group member stores (yi, ei, ri, si), which corresponds to the group manager’s
signature (issued using the Camenisch-Lysyanskaya signature scheme from [55]). This signature
certifies the membership of i in the group. Value wi will be used by member i during the signing
procedure to prove possession of a root of w, which will be modified upon each revocation event.
The extra value si will be used by the group manager for revocation purposes, namely to make
all group signatures issued by a revoked member i publicly linkable.

Federal Office for Information Security 209

12. Specification and Performance of the Camenisch-Groth Scheme

Revocation procedure. The revocation algorithm Revoke takes as input the group manager’s
secret key gmsk = (gpk , p, q, XG), the identity i ∈ [1, n] of a member to be revoked, the
registration entry reg [i] = (wi, Yi, Ei, si) and the current update information upd and proceeds
as follows:

1. Publish (i, Ei, si, del) in upd .

i2. Replace w in gpk with wE−1
mod N , whereby the inverse Ei

−1 is computed using the
factors p and q from gmsk .

Observe that each revocation event results in the growth of the published update information
upd .

Update procedure. The randomized update algorithm UpdM takes as input the current secret
signing key gsk [i] = (gpk , wi, xi, ri, yi, ei, si) and the update information upd , and results in a
modification of gsk [i]. For each new entry (j, Ej , sj , del) in upd it proceeds as follows:

1. Find α, β such that αEi + βEj = 1.

α2. Replace wi in gsk [i] with wi
β w mod N .

Notice that the update procedure provides each unrevoked group member i with a new value wi,
which corresponds to the Ei-th root of the current value w published in gpk . To see this denote
the updated witness by wi and the previous witness by wi

' . Let w be the current accumulator
value that was updated in gpk together with publication of Ej and let w ' denote the previous
accumulator value. In particular, the following relations hold:

'E−1' 'Ei jw = w mod N and w = w mod N. i

Correctness of the update procedure for wi then follows immediately from the following equality:

Ei 'β 'βEi αEi 'β 'E−1αEiw = (w w α)Ei = w w = w w j
i i i

'β+E−1αEi '(βEj +αEi)E−1 'E−1
j j j= w = w = w = w mod N.

We observe that our specification considers the strongest revocation variant from [49], where
revocation of member i allows to link all group signatures ever produced by i. This is due to
publication of both Ei and si in upd . If the group manager does not publish si then a revoked
member i would be able to present group signatures that would be valid under older group
public keys.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , wi, xi, ri, yi, ei, si) of member i, where gpk = (N, a, g, h, F, G, H, P, Q, w, f), and
a message m ∈ {0, 1}∗ . The algorithms proceeds as follows:

1. Pick random r ∈R {0, 1}YN /2 and R ∈R ZQ and compute

T1 = hr yiwi mod N, T2 = F R mod P, T3 = GR+xi = GRYi mod P

= HR+ei = T siT4 mod P, T5 2 mod P.

Federal Office for Information Security 210

12. Specification and Performance of the Camenisch-Groth Scheme

2. Compute a signature of knowledge S = (c, sψ, sξ, sρ, sε, sτ) ⎡
 ⎤

aw = T	1

2(E +εf−ψg−ξhρ mod N and T2 = F τ mod P
= Gτ +ξT3 mod P and T4 = Hτ+ε mod P

ψSoK

⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎦

m
ψ, ξ, ρ, ε, τ :	 T5 = T2 mod P

ε ∈ {−2Ye+Yc+Ys , +2Ye+Yc+Ys }

ψ, ξ ∈ {−2YQ+Yc+Ys , +2YQ+Yc+Ys }

as follows:

•	 Choose rψ, rξ ∈R {0, 1}YQ+Yc+Ys , rρ ∈R {0, 1}YN /2+Yc+Ys , rε ∈R {0, 1}Ye+Yc+Ys and rτ ∈R

ZQ.
•	 Compute

= T rε f−rψ −rξ hrρ	 = F rτ = Grτ +rξR1 1 g mod N, R2 mod P, R3 mod P

= Hrτ +rε	 rψR4 mod P, R5 = T2 mod P

•	 Compute c = Hash2(gpk , T1, T2, T3, T4, T5, R1, R2, R3, R4, R5,m).

•	 Compute
sψ = rψ + csi, sξ = rξ + cxi, sρ = rρ + c(−ri − rEi)

sε = rε + cei, sτ = rτ + cR mod Q.

3. Output group signature σ = (S, T1, T2, T3, T4, T5).

The pair (T2, T3) is an ElGamal encryption of Yi and the SoK signature additionally proves that
the signer knows the corresponding xi. With values T1, T4, and T5 the SoK signature further
proves that the signer is in possession of a membership certificate (yi, ei, ri, si) issued by the
group manager. As part of the SoK signature, the signer moreover proves knowledge of a pair

2(E +ei(wi, ei) satisfying the relationship w = wi mod N .

Signature verification. The signature verification algorithm GVrfy takes as input the (cur­
rent) group public key gpk = (N, a, g, h, F, G, H, P, Q, w, f), a message m and a candidate
group signature σ. It is further assumed that GVrfy has access to upd for the current list of si
values. The algorithm proceeds as follows:

1. Parse σ as (S, T1, T2, T3, T4, T5).

2. Parse S as (c, sψ, sξ, sρ, sε, sτ) and check its validity as follows:

•	 Check that sε ∈ {0, 1}Ye+Yc+Ys and sψ, sξ ∈ {0, 1}YQ+Yc+Ys ; otherwise output 0.

•	 Compute

−sξ hsρR ' = (aw)−cT c2
(E +sε f−sψ g mod N, R ' = T −cF sτ mod P, 1 1	 2 2

R ' = T −cGsτ +sξ R ' = T −cHsτ +sε R ' = T −c
sψmod P,	 1 mod P. 3 3	 4 4 mod P, 5 5 T

Federal Office for Information Security 211

12. Specification and Performance of the Camenisch-Groth Scheme

• Check that

c =
?
Hash2(gpk , T1, T2, T3, T4, T5, R 1

' , R ' 2, R 3
' , R 4

' , R 5
' ,m).

If the check fails then output 0.

3. For all si published in upd check whether the following equation is fulfilled:

P −1 P −1 si
T5

Q mod P = T2
Q mod P.

4. If no such si exists and S is a valid SoK signature on message m, then output 1; otherwise
output 0.

We observe that access to upd is only needed to obtain published si values. These values enable
linkability of all signatures produced by the corresponding signer i. This prevents the revoked
signer i from claiming validity of his group signatures under older group public keys. Note
that values si can also be published separately from upd , e.g. in an additional revocation list.
More importantly, linkability checks result in the linear running time of the algorithm GVrfy,
depending on the size of upd .

Opening procedure. The opening algorithm Open takes as input the group manager’s se­
cret key gmsk = (gpk , p, q, XG), the registration information reg , a message m, and a group
signature σ. The algorithm proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse σ as (S, T1, T2, T3, T4, T5).

3. Compute Y = T3/T2
XG mod P .

4. If there exists an i such that reg [i] contains Yi =
?

Y , then output i; otherwise output 0.

Note that the opening procedure can be executed only by the group manager, who is the only
party being in possession of the exponent XG, which is needed to perform the decryption of Yi
from the ElGamal ciphertext pair (T2, T3). Recall that for each group member there is a unique
value Yi stored secretly by the group manager.

12.2.	 Performance Heuristics for Group Management
and Opening

We start our performance analysis of the CG scheme with algorithms and protocols that have
only marginal impact on the performance on the scheme in practice. This includes: key gen­
eration algorithm GKg that is executed only once during the life time of the group; algorithms
for the management of the group (JoinM, Revoke, UpdM) of which JoinM and Revoke are typ­
ically executed on a powerful device representing the group manager and UpdM is performed

Federal Office for Information Security 212

12. Specification and Performance of the Camenisch-Groth Scheme

by unrevoked members whenever someone is revoked, and algorithms such as JoinU, which is
performed only once by each joining member, and Open, which is rarely executed by the group
manager. We analyze performance of these algorithms using our heuristic approach. That is,
in Table 12.1 we first count the amount of most dominant operations in QR(N) and Z∗

P groups
used by the CG scheme.
Notable is that all algorithms in Table 12.1 have constant amount of exponentiations, except

for the Open algorithm, which is linear due to the implicit verification procedure. We would
αlike to highlight that although algorithm UpdM requires computing wi

β w mod N , the length of
exponents α and β is likely to be very short and not comparable to a full modular exponentiation
in the QR(N) group. As already mentioned, the opening procedure, in addition to one modular
exponentiation in the QR(N) group, is dominated by the time tGVrfy, which is needed to verify a
CG group signature; we refer for the latter costs to our analysis of CG verification performance
in Section 12.3.

Table 12.1.: CG Scheme: Dominant Operations in Group Management and Opening

Operation GKg JoinM JoinU Revoke UpdM Open

modular exponentiation (gx mod P) 2 2 2 0 0 1

modular exponentiation (gx mod N) 1 5 8 0 0 0

further significant costs – – – – – tGVrfy

As a second step, we use Table 12.1 to obtain heuristics for running times of all mentioned
algorithms. For this purpose, we use our reference platforms and timing measurements for
modular exponentiations in QR(N) and Z∗

P groups from Sections 11.1 and 11.2, respectively.
The resulting estimates are summarized in Table 12.2. For 2048-bit modulus we observe that
timings of most algorithms remain below one second on both reference platforms. This is
almost the case for 3248-bit modulus on the PC platform. As for the 3248-bit modulus on
the smartphone platform, we observe that about two seconds for JoinU algorithm may still be
acceptable in practice since this algorithm is typically executed only once.

Table 12.2.: CG Scheme: Performance Heuristics for Group Management and Opening

Platform Modulus Size Estimated Time
GKg JoinM JoinU Revoke UpdM Open

PC 2048 bits 36.6 ms 132.6 ms 204.6 ms fast fast 6.3 ms
PC 3248 bits 167.2 ms 668.0 ms 1043.6 ms fast fast 21.0 ms

Smartphone 2048 bits 92.7 ms 335.5 ms 517.6 ms fast fast 16.0 ms
Smartphone 3248 bits 285.5 ms 1144.3 ms 1788.4 ms fast fast 35.4 ms

further significant costs – – – – – tGVrfy

Federal Office for Information Security 213

12. Specification and Performance of the Camenisch-Groth Scheme

12.3.	 Performance Heuristics for Signature Generation
and Verification

In order to provide intuition on the expected execution time of the signature generation and
verification procedures of the CG scheme, we first break down its GSign and GVrfy algorithms
into most dominant operations. That is, in Table 12.3 we summarize the total amount of
modular exponentiations in QR(N) and Z∗

P groups used by the CG scheme. The amount of
modular exponentiations modulo N is identical in both algorithms, whereas the verification
procedure has linear amount of exponentiations modulo P in the number of revoked members.
For the prescribed choice of parameters, in particular due to the equal length of N and P ,
the difference between the two exponentiation operations is not significant. The linear amount
of work in the verification procedure, however, will play an important role in our scalability
analysis of the scheme. In general we observe that, if there are revoked members, the verification
procedure of the CG scheme has higher costs than its signing procedure.

Table 12.3.: CG Scheme: Dominant Operations in Signature Generation and Verification

Operation GSign GVrfy

modular exponentiation (gx mod P) 8 8 + r

modular exponentiation (gx mod N) 5 5

Further, we use Table 12.3 to obtain heuristics for running times of both algorithms. For this
purpose we use our reference platforms and timing measurements for modular exponentiations
in QR(N) and Z∗

P groups from Sections 11.1 and 11.2, respectively. The resulting estimates
are summarized in Table 12.4. Notable is the significant increase in time, when moving from
2048-bit to 3248-bit RSA modulus, where the signing and verification procedures take four
times longer on average.

Table 12.4.: CG Scheme: Performance Heuristics for Signature Generation and Verification

Platform Modulus Length Estimated Time
(128-bit security) GSign GVrfy

PC
PC

2048 bits
3248 bits

170.4 ms
794.0 ms

170.4 + 6.3r ms
794.0 + 21.0r ms

Smartphone
Smartphone

2048 bits
3248 bits

431.5 ms
1356.7 ms

431.5 + 16.0r ms
1356.7 + 35.4r ms

It would thus take on average about 170 ms for 2048-bit modulus and about 794 ms for 3248­
bit modulus to generate a group signature on our PC platform. On our smartphone platform
we should expect an increase to about 431 ms and 1357 ms, respectively. A more detailed
analysis of the verification procedure and its scalability is provided in the next section.

Federal Office for Information Security 214

12. Specification and Performance of the Camenisch-Groth Scheme

12.3.1. Scalability of the Verification Procedure

Due to the revocation checks performed during the verification procedure, the execution time
of GVrfy in the CG scheme depends on the length of the public update information upd .
Therefore, scalability of the verification procedure is of importance for the practical use of this
scheme. If the group signature was produced by a revoked user i, then its verification procedure
will terminate as soon as the revocation check is performed using the revocation token of i.
That is, in the worst case the verification procedure would have to perform r revocation checks
prior to its termination.
In Figure 12.1 we illustrate scalability of the verification procedure for the modulus size of

2048 bits. We observe that on our PC platform, the verification operation would require about
170 ms plus additional 6.3 ms for each revoked member, whereas on our smartphone platform
the expected time will increase by several factors to about 431 ms plus additional 16 ms per
revoked member. Note that for groups with up to 1000 revoked members the corresponding time
for verification would require on average up to 10 seconds on our PC resp. about 17 seconds
on our smartphone platform. In case of 100,000 revoked users, the verification time on PC
would take about 10 minutes and on smartphone about 27 minutes, which seems impractical
for most applications, not talking about 1.5 hours on PC and about 4.4 hours on smartphone
once r reaches one million. Note that these timings are obtained based on our heuristics and
thus provide a high-level intuition about the practicality of the CG scheme.
In Figure 12.2 we extend our scalability analysis to the verification procedure for the mod­

ulus size of 3248 bits. Here the expected timings are generally higher. On our PC platform
verification would take about 794 ms plus additional 21 ms per revoked member, whereas on
our smartphone platform it would take about 1357 ms plus additional 35.4 ms per revoked
member to verify a single group signature. In groups with up to 1000 revoked members the
corresponding time for verification would on average amount to up to 22 seconds on our PC
resp. about 37 seconds on our smartphone platform, which is almost half as efficient than for
2048-bit modulus. In case of 100,000 revoked users, the verification time on our PC platform
would take almost half an hour and almost an hour on our smartphone platform. Once r reaches
one million, we should expect about 5 hours on PC and about 9.8 hours on smartphone.
Although the constant amount of time needed to verify one signature without performing

any revocation checks could suit some practical applications, especially using 2048-bit modulus,
the poor scalability behavior of the CG scheme represents a major bottleneck and constrains
its use in practice.

12.4. Space Requirements for the Main Parameters

In Table 12.5 we estimate the required amount of space to store the most significant parameters
used in the CG scheme. More precisely, we consider lengths of group public keys gpk , individual
secret signing keys gsk [i], group signatures σ, group manager’s secret keys gmsk and the regis­
tration lists reg that the group manager has to keep private, and the public update information
upd that is published by the group manager and allows unrevoked group members to update
their secret signing keys after occurring revocation events. We estimate storage requirements

Federal Office for Information Security 215

12. Specification and Performance of the Camenisch-Groth Scheme

10 h

1 h

10 min

1 min

10 sec

1 sec

100 ms

number of revoked users

ex
ec
u
ti
on

 t
im

e

GSign (PC)
GVrfy (PC)

GSign (Smartphone)
GVrfy (Smartphone)

1 1000 100000 1000000

Figure 12.1.: CG Scheme: Scalability of Signing and Verification Procedures (2048-bit modulus)

for these parameters using our previous analysis of space complexity from Table 10.4 and ap­
plying concrete parameter lengths for the addressed security levels. As measurement unit in
the table we use 1 Kb = 1024 bits.
We first observe that several parameters of the CG scheme remain of constant length. This

refers to group public keys, secret signing keys, and generated group signatures. The secret
information in each gsk [i] that could potentially be stored in a protected memory is lower than
the size of group public keys and signatures that are used in the verification procedure.

Table 12.5.: CG Scheme: Space Requirements

Modulus Length gpk gsk [i] σ gmsk and reg upd

2048 bits 20.41 Kb 6.89 Kb 14.79 Kb 2.41 + 5.15(m − r) Kb 1.15r Kb
3248 bits 32.13 Kb 10.41 Kb 21.82 Kb 3.58 + 7.49(m − r) Kb 1.15r Kb

m — number of group members; r — number of revoked members.

The length of the public update information upd increases over the time, as members get
revoked. This increase can be seen as another impact factor on the scalability of the CG

Federal Office for Information Security 216

12. Specification and Performance of the Camenisch-Groth Scheme

10 h

1 h

GSign (PC)
GVrfy (PC)

GSign (Smartphone)
GVrfy (Smartphone)

1 1000 100000 1000000

ex
ec
u
ti
on

 t
im

e

10 min

1 min

10 sec

1 sec

number of revoked users

Figure 12.2.: CG Scheme: Scalability of Signing and Verification Procedures (3248-bit modulus)

scheme. As shown in Figure 12.3, with every newly revoked member the size of upd increases
by 1.15 Kb. That is, if the number of revoked members reaches 1000 then about 143 KB
space will be needed to store the published update information. If this number exceeds one
million then the required amount of space increases to over 139 MB. We observe, however, that
unrevoked members need not to download the entire list upd to perform the update of their
signing keys, i.e., they only need those elements that have been added to the list since their last
update procedure. Therefore, the increasing length of upd in the CG scheme wouldn’t count
as a severe limitation in practice.
Furthermore, we notice that the required amount of space for storing the secret information

on the side of the group manager also increases over the life time of the group. This secret
information is in fact comprised of the group manager’s secret key gmsk and the registration
information reg that is used by the group manager in the opening procedure and whose size
depends linearly on the number of unrevoked members in the system. Each time a new member
joins the group, the amount of space for this information increases by 5271 bits for 2048-bit
modulus and by 7671 bits for 3248-bit modulus. Note that, each time a member is revoked, the
size of the secret information in reg can be decreased by the same amount, i.e., once the group
manager publishes the revocation token of that member. In the worst case, i.e., if no users are
revoked, reg would require about 643 KB (for 2048-bit modulus) resp. 936 KB (for 3248-bit

Federal Office for Information Security 217

100 MB

10 MB

1 MB

100 KB

10 KB

1 KB

1 Kb

number of revoked users

sp
ac
e
(1

 M
B

 =
 1
02
4
K
B

 =
 1
02
4
· 8

 K
b

 =
 1
02
4
· 8

 ·
10
24

 b
it
s)

|upd |

1 1000 100000 1000000

12. Specification and Performance of the Camenisch-Groth Scheme

Figure 12.3.: CG Scheme: Scalability of Published Update Information

modulus) for groups of 1000 members and over 628 MB resp. 914 MB for groups of one million
users. In practice the actual content of gmsk can be stored in a tamper-resistant hardware
module for better protection. The plain size of gmsk (i.e., not counting secret revocation
information) is constant and relatively small, namely 2.41 Kb or 3.58 Kb, depending on the
modulus size.

Federal Office for Information Security 218

13. Specification and Performance of

the Boneh-Shacham Scheme

13.1.	 Detailed Specification of the Boneh-Shacham
Scheme

The Boneh-Shacham (BS) group signature scheme has a single security parameter κ ∈ N and
uses bilinear groups G1 = (g1), G2 = (g2), and GT of prime order Q with |Q| = κ, a bilinear
map e : G1 × G2 → GT , and an efficiently computable homomorphism ψ from G2 to G1 with
ψ(g2) = g1. Additionally, two hash functions Hash1 : {0, 1}∗ → G2 and Hash2 : {0, 1}∗ → ZQ2

are used, treated as random oracles. Note that the required homomorphism ψ implies, that the
BS scheme is not implementable using Type-3 pairings. In the following we specify the core
algorithms and protocols of the BS scheme. Our description follows the specification from [38].

Key generation. The key generation algorithm GKg on input 1κ and the number of group
members n performs the following steps:

1. Select γ ∈R Z∗
Q and set w = g2

γ .

2. For each user i ∈ [1, n], generate a tuple (Ai, xi) with xi ∈R Z∗ such that γ + xi = 0 and Q
1/(γ+xi)Ai = g1 .

3. Output (gpk , RL, grt , gsk) such that:

• group public key gpk = (Q, G1, G2, g1, g2, e, w)

• revocation list RL is initially empty

• n-element vector of revocation tokens of member i: grt [i] = (Ai)

• n-element vector of secret signing keys of member i: gsk [i] = (gpk , Ai, xi).

It is assumed that key generation is performed in a trusted way. In particular, this means
that the elements γ and xi, with i ∈ [1, n], are chosen independently at random from Z∗ and,Q

more importantly, γ is not known to any party except for the issuer.
Since γ is not used after the key generation is performed it should be safely erased by the

issuer (cf. Section 2.4).

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , Ai, xi) of member i and a message m ∈ {0, 1}∗, and proceeds as follows:

219

� �

13. Specification and Performance of the Boneh-Shacham Scheme

1. Pick a random nonce r ∈R Z∗ Obtain generators û, v̂ in G2 from Hash1 as

(û, v̂) = Hash1(gpk , m, r) ∈ G2
2

and compute their images in G1:

u = ψ(û), v = ψ(v̂).

Q.

2. Select α ∈R Z∗ and compute: Q

T1 = u α , T2 = Aiv α .

3. Set δ = xiα ∈ Z∗
Q.

4. Compute a signature of knowledge S = (c, sα, sx, sδ)

α T xi δ
T1 = u and 1 = u
SoK α, δ, xi :	 m

e(T2v
−α, wg 2

xi) = e(g1, g2)

as follows:

• Choose rα, rx and rδ ∈R ZQ.
• Compute

rα	 −rδR1 = u R2 = e(T2, g2)
rx · e(v, w)−rα · e(v, g2)−rδ R3 = T1

rx · u .

• Compute c = Hash2(gpk , m, r, T1, T2, R1, R2, R3).

•	 Compute

sα = rα + cα sx = rx + cxi sδ = rδ + cδ.

5. Output group signature σ = (S, r, T1, T2).

The SoK signature proves that the signer is in possession of a pair (Ai, xi) such that Ai =
1/(γ+xi)g1 ; thus, proving that the signer has a valid signing key gsk [i].

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (Q, G1, G2, g1, g2, e, w), the revocation list RL, a message m, and a candidate
group signature σ and proceeds as follows:

1. Parse σ as (S, r, T1, T2).

2. Parse S as (c, sα, sx, sδ) and check its validity as follows:

• Obtain generators û, v̂ in G2 as (û, v̂) = Hash1(gpk , m, r) and compute their images
in G1:

u = ψ(û), v = ψ(v̂).

Federal Office for Information Security 220

13. Specification and Performance of the Boneh-Shacham Scheme

• Compute:

R1
' = u sα /T1

c

R2
' = e(T2, g2)

sx e(v, w)−sα e(v, g2)
−sδ · (e(T2, w)/e(g1, g2))

c

R ' T sx −sδ= u3 1

• Check that:
c =

?
Hash2(gpk , m, r, T1, T2, R 1

' , R 2
' , R 3

').

If the check fails, output 0.

3. For all Ai = grt [i] ∈ RL with i ∈ [1, n], check whether Ai is encoded in (T1, T2) by
checking if

e(T2/Ai, û) =
?

e(T1, v̂).

If no element of RL is encoded in (T1, T2) then output 1; otherwise output 0.

Implicit opening procedure. The implicit opening algorithm Open takes as input the group
public key gpk = (Q, G1, G2, g1, g2, e, w), the vector of revocation tokens grt , a message m, and
a group signature σ and proceeds as follows:

1. Check for all i ∈ [1, n] whether GVrfy(gpk , grt [i], m, σ) = 0.

2. Output the first such i; or 0 if no such i is found.

13.2.	 Performance Heuristics for Group Management
and Opening

We start our performance analysis of the BS scheme with algorithms that have only marginal
impact on the performance of the scheme in practice. This includes: key generation algorithm
GKg that is executed only once during the life time of the group and the implicit opening
procedure Open. Note that both of these operations are typically executed on powerful devices
representing the group manager. We analyze performance of both algorithms using our heuristic
approach.
The BS scheme is static. Hence, the group manager or issuer (since BS may have distributed

authorities) computes an individual secret signing key gsk [i] for each member of the group. Let
m denote the total number of group members. In this case GKg will require m exponentiations
in the input group G1 and only one exponentiation in the input group G2, which is the most
costly operation in the assumed setting, according to Section 11.3.
Using the timing measurements with the PBC library from Section 11.3, our heuristic ap­

proach indicates roughly 10.8 seconds for the generation of 1000 keys, roughly 17.8 minutes for
100,000 keys, and about 2.9 hours for one million keys on the PC platform, and at least twice
more on the Smartphone platform.

Federal Office for Information Security 221

13. Specification and Performance of the Boneh-Shacham Scheme

The opening procedure Open of the BS scheme is implicitly given via the GVrfy algorithm,
except that instead of the revocation list RL, which GVrfy uses normally as input, in Open it
uses the list of revocation tokens grt . In the worst case this execution of GVrfy would have to
process one entry grt [i] for each member of the group. This corresponds to the execution time
of GVrfy with at most m revocation checks. We postpone the corresponding analysis of GVrfy
to the next section.

13.3.	 Performance Heuristics for Signature Generation
and Verification

We provide intuition about the running time of the signature generation and verification proce­
dures in the BS scheme as follows. In Table 13.1 we first break down algorithms GSign and GVrfy
into their dominant operations within the assumed setting of bilinear maps. That is, we count
the total amount of exponentiations in groups G1, G2, and GT and the amount of pairing eval­
uations e(·, ·) performed by these algorithms. We notice that none of these algorithms requires
any exponentiation in G2, which has the highest costs amongst the three groups according to
Section 11.3. Nonetheless, the verification procedure of the BS scheme requires linear amount
of work for performing the revocation checks. These costs are dominated by pairing evaluations
that have comparable costs to exponentiations in G2. Leaving out those costs we observe that
the verification procedure would still be costlier than the signing procedure.

Table 13.1.: BS Scheme: Dominant Operations in Signature Generation and Verification

Operation GSign GVrfy

exponentiations in G1 5 4

exponentiations in G2 0 0

exponentiations in GT 3 4

pairing evaluations e(·, ·) 3 6 + r

r — number of revoked members.

Further, we use Table 13.1 to obtain heuristics for running times of both algorithms for the
chosen security level of approximately 128 bits. For this purpose we use our reference platforms
and timing measurements of dominant operations in the bilinear map setting from Section 11.3.
The resulting estimates are summarized in Table 13.2.

We observe that it would thus take less than half a second to generate a BS group signature
on our PC platform and more than one second on our Smartphone. In the next section we
discuss scalability of its verification procedure, based on our measurements and those obtained
from the literature.

Federal Office for Information Security 222

13. Specification and Performance of the Boneh-Shacham Scheme

Table 13.2.: BS Scheme: Performance Heuristics for Signature Generation and Verification

Platform Order of G1, G2, GT

(≈128-bit security)
Estimated Time

GSign GVrfy

PC
Smartphone

332 bits
332 bits

402.4 ms
1211.7 ms

691.6 + 91.8r ms
2118.0 + 283.2r ms

r — number of revoked members.

13.3.1. Scalability of the Verification Procedure

The verification time of BS group signatures depends on the length of the revocation list RL.
Hence, we are interested in the scalability of the verification procedure considering the potential
increase of |RL| = r over the life time of the group. As demonstrated in Figure 13.1, the increase
of r has linear impact on the verification time, i.e. verification procedure would require about
700 ms plus roughly 100 ms per each revoked member on our PC platform and about 2000 ms
plus 250 ms per revoked member on our Smartphone platform.

10 d

1 d

1 h

ex
ec
u
ti
on

 t
im

e

10 min

1 min

10 sec

1 sec

100 ms

1 1000 100000 1000000

GSign (PC, ours)
GVrfy (PC, ours)

GSign (Smartphone, ours)
GVrfy (Smartphone, ours)

GVrfy (PC, [145])
GVrfy (FPGA, [187])

number of revoked users

Figure 13.1.: BS Scheme: Scalability of Signing and Verification Procedures

Notice that if the group signature has been issued by a revoked member then up to r revo-

Federal Office for Information Security 223

13. Specification and Performance of the Boneh-Shacham Scheme

cation checks will be needed in the worst case to mark the signature as invalid. For groups
with up to 1000 revoked members the entire verification procedure may take several minutes,
which can already be critical for the practical use of the scheme. In larger groups, with up
to 100,000 resp. one million revoked members it would take over two hours resp. more than
one day, based on our measurements, which is far from being practical. We observe that these
timings are estimated on our reference platforms using the PBC library, which is, however, not
as efficient as some measurements from the literature report. Therefore, we are interested in
estimations that can be obtained based on other sources than the PBC library.
For this purpose, we utilize reports obtained from our literature survey, summarized earlier

in Table 11.4. We will consider the fastest measurement of 1.55 ms on a PC platform from
[145] and the even faster measurement of 0.66 ms, which was reported in [187] on an FPGA
platform. We stress that these measurements drastically reduce the required amount of time
for pairing-based operations in comparison to the open-source PBC library.
In Figure 13.1 we illustrate the impact of these state-of-the-art pairing implementations on

the verification procedure of the BS scheme. In particular, for the PC platform the estimated
time is significantly reduced to about a second for up to 1000 revoked members, about a couple
of minutes for 100,000 revoked users and about 25 minutes for one million revoked users. With
the fastest implementation on an FPGA platform those timings can be reduced even further,
i.e. to less than a second for 1000 revocation checks, about one minute for 100,000 revocation
checks, and about 11 minutes for one million of revoked members.
Although the amount of time for performing the revocation checks can be significantly sped up

using state-of-the-art pairing implementations, those costs still represent the main performance
bottleneck of the BS scheme.

13.4. Space Requirements for the Main Parameters

In Table 13.3 we estimate the required amount of space to store the main private and public
parameters of the BS scheme. More precisely, we consider lengths of the group public key gpk ,
individual secret signing keys gsk [i], group signatures σ, revocation tokens in grt that are
considered as a secret information of the group manager, and the revocation list RL that is
publicly known and used during the verification procedure. We estimate storage requirements
for these parameters using our previous analysis of space complexity from Table 10.4 and
applying the concrete lengths of parameters for the addressed security levels. As a measurement
unit in the table we use 1 Kb = 1024 bits.
We observe first that several parameters of the BS scheme remain of constant length. This

refers to group public keys, secret signing keys, and generated group signatures. The secret
information in each gsk [i] that could potentially be stored in a protected memory is lower than
the size of group the public keys and signatures, used in the verification procedure.
The BS scheme is static. Therefore, the group manager has to initially keep secret the

revocation tokens in grt for all members of the group. That is the amount of secret information
stored by the group manager initially corresponds to about 360 bits for each member of the
group. The amount of secret information in grt accounts to about 44 KB for groups with up
to 1000 members, to about 4.3 MB for groups of 100,000 members, and to about 42.8 MB for

Federal Office for Information Security 224

13. Specification and Performance of the Boneh-Shacham Scheme

Table 13.3.: BS Scheme: Space Requirements

Order of G1, G2, GT gpk gsk [i] σ grt RL

332 bits 2.75 Kb 0.68 Kb 2.32 Kb 0.35(m − r) Kb 0.35r Kb

m — number of group members; r — number of revoked members.

sp
ac
e
(1

 M
B

 =
 1
02
4
K
B

 =
 1
02
4
· 8

 K
b

 =
 1
02
4
· 8

 ·
10
24

 b
it
s)

100 MB

10 MB

1 MB

100 KB

10 KB

1 KB

1 Kb

256 bits

1 1000 100000 1000000

|RL|

number of revoked users

Figure 13.2.: BS Scheme: Scalability of Published Revocation Lists

groups with one million members.
However, as soon as member i is revoked and its token grt [i] is published in the revocation list

RL the group manager can erase this token from grt . Hence, the amount of secret information
that has to be stored on the side of the group manager will decrease over the life time of the
group by 360 bits for each revoked user. Since the entire revocation list must be used as input
to the verification procedure it would have to be stored or fetched by verifiers to recognize
signatures of revoked members. Therefore, the increasing size of the revocation list represents
another impact factor on the scalability of the scheme, as illustrated in Figure 13.2.

Federal Office for Information Security 225

14.	 Specification and Performance of
the Bichsel-Camenisch-Neven­
Smart-Warinschi
Scheme

14.1.	 Detailed Specification of the
Bichsel-Camenisch-Neven-Smart-Warinschi
Scheme

The BCNSW-VLR group signature scheme is a dynamic scheme with verifiable opening em­
ploying a user PKI (connected with an unforgeable digital signature scheme Σ = (Kg, Sign, Vrfy)
specified in Section 3.4). It has a single security parameter κ ∈ N and uses an asymmetric bi-
linear pairing, namely groups G1 = (g1), G2 = (g2), and GT of prime order Q with |Q| = κ and
a bilinear map e : G1 ×G2 → GT . Additionally, two hash functions Hash1, Hash2 : {0, 1}∗ → ZQ

are used and modeled as random oracles in the proof of security. The BCNSW-VLR scheme is
based on the ordinary Camenisch-Lysyanskaya signature scheme [57, Scheme A] and especially
makes use of the fact that these signatures are re-randomizable, i.e. given a valid signature
(a, b, c) ∈ G3 on a message m ∈ ZQ, the tuple (ar, br, cr) for any r ∈R Z∗ will also be a valid 1	 Q

signature on m.
In the following we specify the core algorithms and protocols of the BCNSW-VLR scheme.

Our description follows the specification from [31].

Key generation. The key generation algorithm GKg on input 1κ performs the following steps:

x1. Select x ∈R ZQ, y ∈R ZQ and set X = g2 , Y = g2
y .

2. Output (gpk , gmsk , reg) such that:

• group public key gpk = (Q, G1, G2, g1, g2, e, X, Y)

• group manager’s secret key gmsk = (gpk , x, y)

• registration list reg is initially empty

• revocation list RL is initially empty

• list of revocation tokens grt is initially empty.

227

� �

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

It is assumed that key generation is performed in a trusted way. In particular, this means that
the elements x, y are chosen independently at random from ZQ. This assumption is necessary
to ensure trust into the group public key gpk .

User key generation. The user key generation algorithm UKg on input 1κ computes and
returns the private/public key pair (usk [i], upk [i]) using the key generation algorithm (usk [i],
upk [i]) ←R Kg(1

κ) of the connected (unforgeable) digital signature scheme Σ, where upk [i] is
assumed to be certified. As noticed in Section 2.3.2, the user PKI is modeled here using the
list of registered public keys upk .

Join protocol. The join protocol Join is executed between the group manager with input
gmsk = (gpk , x, y) and a prospective member i with input gpk = (Q, G1, G2, g1, g2, e, X, Y) and
an own PKI-certified key pair (usk [i], upk [i]). It proceeds as follows:

1. The group manager chooses a random Ki ∈R ZQ, computes ti = Hash2(Ki), and sends ti
to the member i.

2. Member	 i chooses τi ∈R ZQ, computes si = g1
τi , ri = Xτi , ki = e(g1, ri), as well as

σ̄i ←R Sign(usk [i], ki), sends (si, ri, σ̄i) to the group manager together with a proof (c, sτi)
representing

NIZKPoK τi : si = g1
τi and ri = Xτi

computed as follows:

•	 Choose rτi ∈R ZQ.

•	 Compute R1 = g1
rτi and R2 = Xrτi .

•	 Compute c = Hash1(gpk , si, ri, R1, R2).

•	 Compute sτi = rτi + cτi mod Q.

3. The group manager	 checks that Vrfy(upk [i], e(g1, ri), σ̄i) =
?

1. She then verifies the
NIZKPoK as follows:

•	 Compute R1
' = g1

sτi /si
c and R2

' = Xsτi /ri
c .

•	 Check that c =
?
Hash1(gpk , si, ri, R ' 1, R 2

'); otherwise abort.

The group manager now computes zi = sig1
Ki and wi = riXKi , stores (wi, ri, Ki, σ̄i) in

ρi y x ρixyreg [i] and wi in grt [i], chooses ρi ∈R ZQ, computes ai = g1 , bi = ai , and ci = ai zi ,
and sends (ai, bi, ci, Ki) to the user together with a proof (c, sx, sy, sρi , sρixy) representing

x ρixy ρi xci = a and ai = g and X = gi zi	 1 2NIZKPoK x, y, ρi :	 yY	 = g2 and 1 = bxi /g1
ρixy

computed as follows:

•	 Choose rx, ry, rρi , rρixy ∈R ZQ.

Federal Office for Information Security 228

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

• Compute

rx rρixy rρi rx ry	 rρixyR1 = a z , R2 = g , R3 = g , R4 = g , R5 = brx /gi i	 1 2 2 i 1

• Compute c = Hash1(gpk , si, ri, zi, R1, R2, R3, R4, R5).

•	 Compute

sx = rx + cx mod Q, sy = ry + cy mod Q, sρi = rρi + cρi mod Q,

sρixy = rρixy + cρixy mod Q

4. Member i computes ξi = τi + Ki mod Q and checks whether ti =
?
Hash2(Ki). She also

verifies e(ai, Y) = e(bi, g2) and the proof (c, sx, sy, sρi , sρixy) as follows:

• Compute
ξisρixy	 sρiR ' = a sx g /ci

c , R '	 = g /aci , R ' = g sx /Xc ,1 i 1 2 1 3 2

sy sρixyR ' = g /Y c , R ' = bsx /g4 2 5 i 1

• Check that c =
?
Hash1(gpk , si, ri, g ξi , R ' , R ' , R ' , R ' , R '), otherwise abort. 1 1	 2 3 4 5

Finally she stores her secret key gsk [i] = (gpk , ξi, ai, bi, ci).

The (ai, bi, ci) part of the secret signing key represents an ordinary Camenisch-Lysyanskaya
signature on message ξi.

Signature generation. The signing algorithm GSign takes as input the secret signing key
gsk [i] = (gpk , ξi, ai, bi, ci) of member i, with gpk = (Q, G1, G2, g1, g2, e, X, Y), and a message
m ∈ {0, 1}∗, and proceeds as follows:

1. Re-randomize the Camenisch-Lysyanskaya signature of gsk [i] by choosing r ∈R ZQ and
computing T1 = ari , T2 = bri , and T3 = cri .

2. Compute a signature of knowledge S = (c, sξi)

e(T3,g2)SoK ξi : = e(T2, X)ξi m
e(T1,X)

as follows:

• Choose rξi ∈R ZQ.

•	 Compute R1 = e(T2, X)rξi .

e(T3,g2)
• Compute c = Hash1(gpk , , R1).e(T1,X)

• Compute sξi = rξi + cξi mod Q.

3. Output group signature σ = (S, T1, T2, T3).

Federal Office for Information Security 229

� �

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

In the above signature generation algorithm, which leverages the re-randomization property
of ordinary Camenisch-Lysyanskaya signatures, the SoK signature proves that the signer knows
ξi for which (T1, T2, T3) is a valid signature; thus, proving that the signer has a valid signing
key gsk [i].

Signature verification. The signature verification algorithm GVrfy takes as input the group
public key gpk = (Q, G1, G2, g1, g2, e, X, Y), the revocation list RL, a message m, and a candi­
date group signature σ and proceeds as follows:

1. Parse σ as (S, T1, T2, T3).

2. If e(T1, Y) = e(T2, g2) then output 0.

3. Check that S is a valid SoK signature on message m as follows:

• Parse S as (c, sξi).

e(T3,g2)• Compute R ' = e(T2, X)sξi /
c
.1 e(T1,X)

• Check that
? e(T3,g2)c = Hash1(gpk , , R ').

e(T1,X) 1

If the check fails then output 0.

4. For all grt [i] = wi ∈ RL check whether e(T3, g2) =
?

e(T1, X)e(T2, wi) holds. If no such wi

exists then output 1; otherwise output 0.

The idea of Bichsel et al.’s VLR construction is to integrate a part of the opening procedure
into the verification. The needed modifications are possible in the sub-class of schemes, where it
suffices for the Open algorithm to take only (gpk , m, σ, reg) as input instead of (gmsk , m, σ, reg)
(i.e., just the registration list reg is required to open a signature, not the group manager’s secret
key gmsk). Note that the BCNSW scheme (Section 7.3) falls into this sub-class. To be exact,
the element wi of a user’s entry in reg suffices to identify the issuer of a signature, thus the
group manager simply has to store wi in RL in order to revoke a user i.

Implicit opening procedure. The implicit opening algorithm Open, extended to provide
verifiable opening, takes as input the group public key gpk = (Q, G1, G2, g1, g2, e, X, Y), the
vector of revocation tokens grt , the registration list reg , a message m, and a group signature
σ and proceeds as follows:

1. Parse σ as (S, T1, T2, T3).

?
2. Check for all i ∈ [1, n] whether GVrfy(gpk , grt [i], m, σ) = 0. If no such i exists output 0.

3. For the first such i compute ki = e(g1, ri) and J = (c, swi , sKi) as the NIZKPoK proof

e(T3,g2) e(g1,wi)NIZKPoK wi, Ki : = e(T2, wi) and ki =
e(T1,X) e(g1,X)Ki

using reg [i] = (wi, ri, Ki, σ̄i). This proof can be computed as follows:

Federal Office for Information Security 230

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

•	 Choose rwi ∈R G2 and rKi ∈R ZQ.
•	 Compute R1 = e(T2, rwi) and R2 = e(g1, rwi)/e(g1

rKi , X).

•	 Compute c = Hash1(gpk , σ, m, ki, σ̄i, R1, R2).

•	 Compute swi = rwi wi
c and sKi = rKi + cKi mod Q.

4. Output (i, τ) where τ = (ki, σ̄i, J).

The NIZKPoK proof J prevents the group manager pointing to some member i for which
the verification equation e(T3, g2) = e(T1, X)e(T2, wi) does not hold. Moreover, inclusion of ki
into the proof τ allows verification of the signature σ̄i, which uniquely identifies the signer.
Note that the opening operation is linear in the number of users in the system, which is

reasonable if the group manager has sufficient resources and the operation is not performed too
often.

Judgement procedure. The judgement algorithm Judge takes as input the group public key
gpk = (Q, G1, G2, g1, g2, e, X, Y), a message m, a group signature σ, an identity i, and proof τ ,
and proceeds as follows:

1. If GVrfy(gpk , m, σ) = 0 then output 0.

2. Parse τ as (ki, σ̄i, J).

3. Retrieve upk [i].

4. If Vrfy(upk [i], ki, σ̄i) = 0 then output 0.

5. Parse J as (c, swi , sKi).

6. Check the validity of proof J as follows:

•	 Compute R1
' = e(T2, swi)e(T1

c, X)/e(T3
c, g2) and R2

' = e(g1, swi)/ e(g1
sKi , X) · kic .

•	 Check that c =
?
Hash1(gpk , σ, m, ki, σ̄i, R 1

' , R ' 2). If the check succeeds then output 1,
otherwise output 0.

Through the verification of the NIZKPoK proof J the judgement procedure obtains confidence
that user i has been chosen correctly from reg in the opening step. Furthermore, it ensures
the validity of the group signature. The actual identification of the signer i is performed using
the signer’s PKI-certified public key upk [i] and the signature σ̄i. It is implicitly assumed that
identity i points to the candidate public key upk [i] used in the final verification step.

14.2.	 Performance Heuristics for Group Management
and Verifiable Opening

We start our performance analysis of the BCNSW-VLR scheme with algorithms and protocols
that have only marginal impact on the performance on the scheme in practice. This includes:

Federal Office for Information Security 231

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

the key generation algorithm GKg that is executed only once during the life time of the group;
the algorithms JoinM and JoinU for handling the admission of new group members, the opening
procedure Open, and the judgement procedure Judge that can be used to verify the correctness
of the opening procedure. Note that GKg, JoinM, and Open are typically executed on powerful
devices, representing the group manager, whereas Judge is performed by users with, potentially,
less powerful devices. However, Judge can be seen as a relatively rare operation. The user’s
part of the admission procedure, the algorithm JoinU, is performed only once per member.
We analyze the performance of these algorithms using our heuristic approach. That is, in

Table 14.1 we first count the amount of most dominant operations in the bilinear map setting
used by the BCNSW-VLR scheme.
Notable is that all algorithms in Table 14.1 have a constant number of exponentiations and

pairing evaluations, except for Open and Judge that have linearly increasing costs due to the
implicit execution of the GVrfy algorithm, whose performance we analyze in Section 14.3. We
stress, however, that t ' used in further costs of Open denotes the running time of GVrfy onGVrfy

input the (secret) list of revocation tokens grt instead of the (public) revocation list RL, which
is normally used for verification; t ' thus corresponds to the execution of GVrfy with up to GVrfy

m revocation checks, where m is the total size of the group. In contrast, tGVrfy used in further
costs of Judge is the regular execution time of GVrfy on input RL. We also observe that in
the JoinM part of the joining protocol the group manager has to verify a digital signature σ̄i
that she receives from the joining member. The costs for its generation are added to the user’s
algorithm JoinU. This signature can be computed using any (unforgeable) digital signature
scheme Σ and its specification is left open in the BCNSW-VLR scheme.

Table 14.1.: BCNSW-VLR Scheme: Dominant Operations in Group Management and Verifi­
able Opening

Operation GKg JoinM JoinU Open Judge

exponentiations in G1 0 12 9 1 3

exponentiations in G2 2 5 6 1 0

exponentiations in GT 0 0 0 0 1

pairing evaluations e(·, ·) 0 0 3 4 5

further significant costs – tVrfy tSign t ' GVrfy tVrfy + tGVrfy

As a second step in our analysis, we use Table 14.1 to obtain heuristic running times of
all mentioned algorithms at the chosen security level of approximately 128 bits. For this pur­
pose, we use our reference platforms and timing measurements for exponentiations and pairing
evaluations from Section 11.3 and summarize the resulting estimates in Table 14.2.
In the assumed bilinear map setting exponentiations in G2 and pairing evaluations e(·, ·)

belong to the most expensive operations and thus dominate the execution time of the analyzed
algorithms. We observe that estimated timings of all algorithms that have constant costs,
namely GKg, JoinM, and JoinU remain significantly below one second on our PC platform
and may reach up to three seconds on our Smartphone platform. These timings, including

Federal Office for Information Security 232

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

Table 14.2.: BCNSW-VLR Scheme: Performance Heuristics for Group Management and Veri­
fiable Opening

Platform Order of Estimated Time
G1, G2, GT GKg JoinM JoinU Open Judge

PC 332 bits 185.2 ms 591.4 ms 927.3 ms 470.5 ms 515.6 ms
Smartphone 332 bits 594.8 ms 1775.0 ms 2850.0 ms 1454.2 ms 1568.7 ms

further significant costs – tVrfy tSign t ' GVrfy tVrfy + tGVrfy

the running time of about three seconds for JoinU on commodity smartphones might still be
acceptable in practice due to the expectedly rare execution of those algorithms.

14.3.	 Performance Heuristics for Signature Generation
and Verification

In the following we provide intuition about the performance of BCNSW-VLR signature gen­
eration and verification procedures, which we estimate in two steps. First, in Table 14.3, we
summarize the amount of most dominant operations within the assumed setting of bilinear
maps. That is we count the total amount of exponentiations in groups G1, G2, and GT , and
of pairing evaluations e(·, ·) used by these algorithms. We notice that none of these algo­
rithms requires exponentiations in G2, which according to Section 11.3 have the highest costs.
Nonetheless, the verification procedure of the BCNSW-VLR scheme is dominated by a linear
number of pairing evaluations, which are only slightly more efficient than exponentiations in
G2. The linear increase in the number of pairing evaluations depends on the number of revoked
group members. Leaving out those costs we observe that the verification procedure would still
be costlier than the signing procedure of the scheme.

Table 14.3.: BCNSW-VLR Scheme: Dominant Operations in Signature Generation and
Verification

Operation GSign GVrfy

exponentiations in G1 3 0

exponentiations in G2 0 0

exponentiations in GT 1 2

pairing evaluations e(·, ·) 3 5 + r

r — number of revoked members.

Further, we use Table 14.3 to obtain heuristics for running times of signature generation and
verification algorithms. For this purpose we use our reference platforms and measured timings

Federal Office for Information Security 233

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

of dominant operations in the bilinear map setting from Section 11.3. The resulting estimates
are provided in Table 14.4.

Table 14.4.: BCNSW-VLR Scheme: Performance Heuristics for Signature Generation and
Verification

Platform Order of G1, G2, GT

(≈ 128-bit security)
Estimated Time

GSign GVrfy

PC
Smartphone

332 bits
332 bits

332.0 ms
1002.3 ms

508.0 + 91.8r ms
1577.4 + 283.2r ms

r — number of revoked members.

We observe that it would take about 332 ms to generate a BCNSW-VLR group signature on
our PC platform and slightly more than a second on our Smartphone. In the next section we
discuss scalability of the verification procedure, based on our measurements and those obtained
from the literature.

14.3.1. Scalability of the Verification Procedure

The verification time of BCNSW-VLR group signatures depends on the length of the revocation
list RL. Therefore, we are interested in the scalability of the verification procedure considering
the potential increase of |RL| = r. As shown in Figure 14.1 the increase of r has linear impact
on the verification time, i.e. the verification procedure would require somewhat more than 500
ms plus roughly 92 ms per each revoked member on our PC platform and more than 1.5 seconds
plus roughly 284 ms per each revoked member on our Smartphone platform.
Notice that it would take up to r revocation checks to detect a group signature issued by

a revoked group member in the worst case. For groups with up to 1000 revoked members,
the entire verification procedure may take between one and a half and almost five minutes,
depending on the platform, which can already be critical for the practical use of the scheme.
In larger groups with up to 100,000 resp. one million revoked members it would take over two
hours resp. more than one day based on our measurements, which is far from being practical.
We observe that these timings are estimated on our platforms using the open-source PBC
library, which however is not as efficient as some recent literature reports show.
Therefore, we again refer to our literature survey from Table 11.4 and provide further esti­

mations, using the fastest PC implementation of pairings from [145], which takes roughly 1.55
ms, and the fastest implementation from [187] that achieved 0.66 ms on an FPGA platform.
In Figure 14.1 we illustrate the impact of these state-of-the-art pairing implementations on the

verification procedure of the BCNSW-VLR scheme. We observe that the expected verification
time on a PC platform can be drastically reduced to about one and a half seconds for 1000
revocation checks, less than three minutes for 100,000 revoked users, and less than 26 minutes
for one million revocation checks. With the fastest implementation on FPGAs these timings
could be reduced even further, i.e. to less than a second for 1000 revocation checks, slightly more
than one minute for 100,000 checks, and about 11 minutes for one million checks. Although

Federal Office for Information Security 234

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

10 d

1 d

1 h

ex
ec
u
ti
on

 t
im

e

10 min

1 min

10 sec

1 sec

100 ms

1 1000 100000 1000000

GSign (PC, ours)
GVrfy (PC, ours)

GSign (Smartphone, ours)
GVrfy (Smartphone, ours)

GVrfy (PC, [145])
GVrfy (FPGA, [187])

number of revoked users

Figure 14.1.: BCNSW-VLR Scheme: Scalability of Signing and Verification Procedures

scalability of the BCNSW-VLR verification procedure can be significantly improved using state­
of-the-art implementations of pairings, its costs remain the main performance bottleneck of the
scheme.

14.4. Space Requirements for the Main Parameters

In Table 14.5 we estimate the required amount of space to store the main private and public
parameters of the BCNSW-VLR scheme. More precisely, we consider lengths of the group
public key gpk , individual secret signing keys gsk [i], output group signatures σ, the group
manager’s secret key gmsk , whereby also counting the size of (secret) registration lists reg ,
and of the public revocation list RL. Note that we do not count sizes of ordinary signatures σ̄i
which are produced by member i during the admission procedure and are stored by the group
manager as part of reg [i] since the signature scheme is left unspecified.
We estimate storage requirements for these parameters using our previous analysis of space

complexity from Table 10.4 and applying the concrete lengths of parameters for the chosen
security level of 128 bits. As a measurement unit in the table we use 1 Kb = 1024 bits.
We observe first that several parameters of the BCNSW-VLR scheme have constant length.

Federal Office for Information Security 235

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

Table 14.5.: BCNSW-VLR Scheme: Space Requirements

Order of gpk gsk [i] σ gmsk and reg RL
G1, G2, GT

332 bits 3.79 Kb 1.38 Kb 1.70 Kb 0.65 + (2.40 + |σ̄i|)(m − r) Kb 1.04r Kb

m — number of group members; r — number of revoked members.

This refers to group public keys, secret signing keys, and output group signatures. The secret
information in each gsk [i] that could potentially be stored in a protected memory is lower than
the size of group public keys and signatures that are used in the verification procedure. We
also observe that group signatures are smaller than group public keys by at least a factor of
two.

The BCNSW-VLR scheme is dynamic. Therefore, each time a new member is added to
the group through the joining procedure, the group manager has to add a new entry into its
registration list reg , which must be kept private in addition to the group manager’s secret

1 Kb

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

sp
ac
e
(1

 M
B

 =
 1
02
4
K
B

 =
 1
02
4
· 8

 K
b

 =
 1
02
4
· 8

 ·
10
24

 b
it
s)

|RL|

1 1000 100000 1000000

number of revoked users

Figure 14.2.: BCNSW-VLR Scheme: Scalability of Published Revocation Lists

Federal Office for Information Security 236

14. Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme

key gmsk , which has constant size of about 665 bits and can be stored in a tamper-resistant
memory. That is, the amount of secret information stored on the group manager’s side increases
by 2460+|σ̄i| bits with each joined member. The corresponding entry reg [i] must be kept secret
until member i is revoked and can possibly be erased after the publication of the token in the
revocation list RL.
Each time a group member is revoked the length of RL increases by 1064 bits. The scalability

impact resulting from this increase is plotted in Figure 14.2. For up to 1000 revoked members
we observe an increase by about 130 KB, for up to 100,000 entries in RL the amount of space
increases by roughly 12.7 MB, and for up to one million entries the size of RL amounts to
almost 127 MB.

Federal Office for Information Security 237

15.	 Performance and Scalability
Comparison

In this section we apply our heuristic evaluations from Chapters 12 to 14 to provide a direct
comparison of the Camenisch-Groth (CG) [49], Boneh-Shacham (BS) [38], and Bichsel et al.
(BCNSW-VLR) [31] group signature schemes with regard to their performance and scalability.

15.1.	 Performance and Scalability

15.1.1.	 Performance Comparison for Group Management and
Opening

In this section we compare the three schemes based on their performance heuristics with regard
to the group management and the opening of group signatures. We start with algorithms that
appear in all three constructions, namely GKg for generation of keys and Open for identification
of signers.
The key generation procedure GKg takes constant amount of time in the dynamic CG and

BCNSW-VLR schemes and has linear increase in the total number of members m for the static
BS scheme. The CG scheme results in the most efficient key generation procedure on our
reference platforms (PC and Smartphone), if we base comparison on our measurements with
PBC library. By using state-of-the-art implementation of pairings the BCNSW-VLR scheme
would become more efficient though. However, this improvement is not significant in practice,
as key generation is a fairly practical operation in both schemes. Since GKg is executed only
once, the linear amount of time for key generation in the BS scheme does not render that
scheme impractical either.
The opening procedure Open of all three schemes makes implicit use of the verification

algorithm GVrfy and thus has linear execution time. However, in the CG scheme this time will
depend on the number of revoked members r since GVrfy is only used to rule out signatures
computed by revoked members. The actual identification of the signer in the CG scheme takes
constant amount of time and makes this scheme most efficient in this respect. In the two VLR
schemes, BS and BCNSW-VLR, identification of the signer takes linear amount of time for
GVrfy and depends on the difference (m − r), which is usually larger than r. Based on our
performance comparison of GVrfy, provided in the next section, we expect the BCNSW-VLR
opening procedure to be more efficient in practice than the same procedure of the BS scheme.
The only non-VLR scheme in our analysis is the CG scheme, which thus brings an additional

algorithm UpdM for the group members to update their secret signing keys once the group man­
ager publishes the required update information through the corresponding algorithm Revoke.

239

15. Performance and Scalability Comparison

We observe that costs of those two algorithms can be seen as negligible, in comparison to the
costs of other algorithms provided by the CG scheme, in particular UpdM and Revoke do not
utilize any costly cryptographic operations.
The BCNSW-VLR scheme is the only scheme in our analysis, which provides verifiable open­

ing. For this purpose it brings the algorithm Judge, whose execution time is linear in the number
of revoked members r, due to the implicit use of the verification procedure GVrfy that rules out
signatures of revoked signers. In comparison to this the additional time for verification of an
ordinary signature σ̄i remains negligible. The judgement procedure, however, does not have a
significant impact on the practical use of the BCNSW-VLR scheme since Judge is a rather rare
operation that would usually be performed on a resourceful device.

15.1.2.	 Performance Comparison for Signature Generation and
Verification

In Table 15.1 we compare timings of signing and verification procedures that were estimated
using our performance heuristics on both reference platforms (PC and Smartphone). Recall that
those heuristics were calculated based on the execution time of the most dominant operations
in Chapter 11 and projected to the number of operations that are required in the respective
signing and verification algorithms. Additionally, for BS and BCNSW-VLR schemes, Table
15.1 estimates those costs based on two fastest pairing implementation from the literature on
the PC [145] and FPGA [187] platforms.

Table 15.1.: Comparison of Signing and Verification Procedures

Group Signature Scheme Context GSign GVrfy

CG

PC, 2048-bit modulus
PC, 3248-bit modulus

Smartphone, 2048-bit modulus
Smartphone, 3248-bit modulus

170.4 ms
794.0 ms
431.5 ms
1356.7 ms

170.4 + 6.3r ms
794.0 + 21r ms
431.5 + 16.0r ms
1356.7 + 35.4r ms

BS

PC
Smartphone
PC, [145]

FPGA, [187]

402.4 ms
1211.7 ms
131.4 ms
128.7 ms

691.6 + 91.8r ms
2118.0 + 283.2r ms
150.1 + 1.55r ms
144.76 + 0.66r ms

BCNSW-VLR

PC
Smartphone
PC, [145]

FPGA, [187]

332.0 ms
1002.3 ms
61.0 ms
58.3 ms

508.0 + 91.8r ms
1577.4 + 283.2r ms
56.8 + 1.55r ms
52.3 + 0.66r ms

r — number of revoked members.

Observe that in all three schemes the signing procedure takes constant amount of time. For
our measurements, based on the MNT curve D476971 from the PBC library, we can see that
signature generation in the BS and BCNSW-VLR schemes is less efficient than in the CG

Federal Office for Information Security 240

15. Performance and Scalability Comparison

scheme. For example, performance of CG signature generation on Smartphone for the selected
security level is comparable to the generation of BS signatures on PC if the latter is implemented
using the mentioned MNT curve. However, using state-of-the-art pairing implementations the
signing performance of the BS and BCNSW-VLR schemes can be significantly improved and
would outperform the CG scheme.
Verification performance in all three schemes depends on two factors: first, there is a constant

amount of time in each group signature scheme, which is needed to check whether the signer
is in possession of the secret membership credential for a particular group; second, there is a
linearly increasing amount of time, which depends on the number of revoked users and is needed
to perform the corresponding revocation checks. We observe that the CG scheme has a more
efficient verification procedure than the pairing-based BS and BCNSW-VLR schemes as long
as the open-source PBC library is used. However, faster implementation of pairings from the
literature would lead to significant performance improvements of those schemes, which would
be superior to the performance of the CG scheme.
We remark that our PC platform is not as powerful as the PC platform from [145]. Therefore,

underlying operations of the CG scheme, when measured on a platform similar to [145], would
result in better timings. We may expect a factor of two in performance increase for the most
dominant operations in the RSA setting, in comparison to the measurements on our reference
platform. This intuition is based on some additional measurements that we performed on
the Xeon E5430 2.66 GHz platform. In this case we may still assume that performance of
pairing-based BS and BCNSW-VLR schemes would prevail over that of the CG scheme.

Summary. Our heuristic approach for performance estimation allows us to make the following
conclusions: (1) using state-of-the-art implementation of pairings the signing and verification
procedures of the BS and BCNSW-VLR would outperform those of the CG scheme; (2) the
BCNSW-VLR scheme has better signing and verification performance than the BS scheme; (3)
with about one second for signature generation on our Smartphone platform and sometimes
even higher verification times all three schemes seem to be on the border of practicality on
such platforms; (4) in contrast, state-of-the-art implementations seem to indicate that all three
schemes would perform fairly well in practice on a PC platform, and as a consequence on an
FPGA platform.

15.1.3.	 Comparison of Verification Scalability with Revocation
Checks

In this section we compare the scalability of verification procedures. Figure 15.1 shows esti­
mated verification performance of the CG, BS, and BCNSW-VLR schemes, as a function of the
number of revoked members, based on our own measurements for the BS and BCNSW-VLR
schemes using the PBC library.
Although all three schemes have linear increase for verification, the CG scheme has better

scalability than the pairing-based BS and BCNSW-VLR schemes. That is, its verification
time remains shorter for both modulus sizes (2048 and 3248 bits). It takes less than two
seconds to verify CG signatures in the presence of 150 revoked members, whereas verification

Federal Office for Information Security 241

10 d

1 d
10 h

1 h

ex
ec
u
ti
on

 t
im

e

10 min

1 min

10 sec

1 sec

100 ms

number of revoked users
1 1000 100000 1000000

CG scheme (PC, 2048-bit modulus)
CG scheme (PC, 3248-bit modulus)

BS scheme (PC)
BS scheme (Smartphone)

BCNSW-VLR scheme (PC)
BCNSW-VLR scheme (Smartphone)

15. Performance and Scalability Comparison

Figure 15.1.: Scalability of Verification Procedure with Revocation Checks (Our Measurements)

Federal Office for Information Security 242

10 h

1 h

10 min

1 min

10 sec

1 sec

100 ms

1 1000 100000 1000000

CG scheme (PC, ours, 2048-bit modulus)
CG scheme (PC, ours, 3248-bit modulus)

BS scheme (PC, [145])
BS scheme (FPGA, [187])

BCNSW-VLR scheme (PC, [145])
BCNSW-VLR scheme (FPGA, [187])

ex
ec
u
ti
on

 t
im

e

number of revoked users

15. Performance and Scalability Comparison

Figure 15.2.: Scalability of Verification Procedure with Revocation Checks (Literature Reports)

of BS and BCNSW-VLR signatures would need about the same amount of time to perform a
single revocation check. We observe that these results are due to the use of a non-optimized
implementation with the PBC library.
For this reason, in Figure 15.2, we also plot verification times calculated using literature

reports for pairing evaluations from Table 11.4. More precisely, we consider 1.55 ms for a
pairing evaluation on a PC [145], and 0.66 ms on an FPGA [187]. We observe a significant
increase in performance of the BS and BCNSW-VLR schemes, not only in comparison to our
PBC-based calculations but also, and more importantly, in comparison to the CG scheme.
For example, within roughly one second it seems feasible to verify BS group signatures with

up to 550 revoked members on a PC and up to 1300 revoked members on an FPGA. The
BCNSW-VLR scheme shows a slightly better performance for smaller revocation lists, i.e. it
would allow verification with up to 600 revoked members on a PC and up to 1440 revoked
members on an FPGA within the same time frame. Interestingly, starting with roughly 1000
revoked members both pairing-based schemes show very similar verification performance and
scalability. The reason is that the impact of the initial timing difference of their verification
procedures, which is about 100 ms on a PC and about 90 ms on an FPGA using calculations
based on [145, 187] in Table 15.1, starts to become negligible for sufficiently large revocation
lists.

Federal Office for Information Security 243

15. Performance and Scalability Comparison

Summary. Our heuristic approach applied for the scalability analysis of verification procedures
in Figures 15.1 and 15.2 leads to the following results: (1) using state-of-the-art implementa­
tion of pairings the scalability of verification procedures in the BS and BCNSW-VLR would
outperform that of the CG scheme, and (2) the BCNSW-VLR scheme shows better scalability
for revocation checks than the BS scheme, yet for sufficiently large revocation lists (roughly
1000 members and more) the performance difference between the two pairing-based schemes
becomes negligible.

15.1.4. Impact of Scalability on Group Sizes

Our previous scalability analysis addressed the increasing size of revocation lists. In practice,
we are interested in total group sizes that can be efficiently handled by the respective schemes.
Due to the constant signing costs in all three schemes, larger group sizes do not have any
impact on the performance of their signature generation procedures. However, scalability of
their verification procedures depends solely on the number of revoked members. Hence, if
none of the members gets revoked the increasing group size wouldn’t matter either. Yet, this
assumption is too strong to be justifiable in practice, where revocation should be taken into
account.
We cannot estimate tolerable group sizes without stating additional assumptions on the

relationship between the number of revoked members and the total group size. We will thus
apply an intuitive argument that in larger groups revocations are more likely to occur. To make
our analysis more explicit we will consider two cases: we will assume that at any given point
in time the number of revoked members does not exceed either 10% or 25% of the total group
size, and perform scalability analysis with regard to four different types of groups: small groups
with less than 1000 members, medium groups ranging between 1000 and 100,000 members,
large groups ranging between 100,000 and one million members, very large groups with more
than one million members.

Case 10%. Figure 15.3 illustrates scalability of the verification procedure assuming that at
each point in time the number of revoked members corresponds to 10% of the total group size.
These numbers are based on fast implementations of pairings from the literature and verification
timing of the three group signature schemes were calculated using our heuristic approach from
the previous parts of the analysis.
We observe that for small groups all three schemes perform reasonably well, in particular

their verification time would remain below one second in most cases (the only exception is the
CG scheme with 3248 bit modulus). The only scheme that would achieve verification time of
at most 200 ms in small groups with up to 1000 members is the BCNSW-VLR scheme. In
medium groups, verification performance of BS and BCNSW-VLR schemes is close to each
other, it would take them roughly one second to verify one group signature for groups of
maximal size between 5500 members on a PC and 13000 members on an FPGA. In medium to
large groups with around 100,000 members, verification of BS and BCNSW-VLR signatures will
take roughly between 7 and 15 seconds. This seems to be impractical, at least for applications
where the signature verification process cannot tolerate significant delays. In larger groups with
up to one million members only FPGA implementations would offer verification timings of less

Federal Office for Information Security 244

ex
ec
u
ti
on

 t
im

e

1 h

10 min

1 min

10 sec

1 sec

100 ms

1 1000 100000 1000000

CG scheme (PC, ours, 2048-bit modulus)
CG scheme (PC, ours, 3248-bit modulus)

BS scheme (PC, [145])
BS scheme (FPGA, [187])

BCNSW-VLR scheme (PC, [145])
BCNSW-VLR scheme (FPGA, [187])

number of group members

15. Performance and Scalability Comparison

Figure 15.3.: Scalability Impact on Group Sizes (10% revoked members)

Federal Office for Information Security 245

1 h

10 min

1 min

10 sec

1 sec

100 ms

1 1000 100000 1000000

CG scheme (PC, ours, 2048-bit modulus)
CG scheme (PC, ours, 3248-bit modulus)

BS scheme (PC, [145])
BS scheme (FPGA, [187])

BCNSW-VLR scheme (PC, [145])
BCNSW-VLR scheme (FPGA, [187])

ex
ec
u
ti
on

 t
im

e

number of groups members

15. Performance and Scalability Comparison

than one minute. When it comes to very large groups with more than one million members,
the verification process of all three schemes would take several minutes and more.

Case 25%. Figure 15.4 performs a similar analysis, but assuming 25% of revoked group mem­
bers. We observe that this threshold might be too high for practical purposes, yet is sufficient to
obtain some intuition on how the percentage of revoked group members impacts the scalability.
Also due to the higher fraction of revoked members, in comparison to the previous case, we
observe the expected general increase of the verification effort.

Figure 15.4.: Scalability Impact on Group Sizes (25% revoked members)

In small groups with up to 1,000 members, the pairing-based BS and BCNSW-VLR schemes
perform reasonably well, offering verification times of up to one second. The CG scheme is
slightly worse in this respect, i.e. in the range of a second CG would be able to perform
verification for groups of up to 500 members assuming 2048-bit modulus, or for groups of up
to 100 members with 3248-bit modulus. Verification time of BS and BCNSW-VLR signatures
seems to exceed one second for 2000 members on a PC and 5000 group members on an FPGA.
In medium to large groups with around 100,000 members, all three schemes are with at least
a few seconds for a single signature verification at the borderline of practicability – or, in the
case of the CG scheme, already far beyond, with corresponding timings of up to 10 minutes.

Federal Office for Information Security 246

15. Performance and Scalability Comparison

Needless to say, practical applications in large or very large groups, with up to one million or
even more members, become time consuming with all three schemes, requiring several minutes
or even hours to verify a single group signature.

Summary. Our heuristic approach, applied in the underlying analysis of verification proce­
dures in Figures 15.3 and 15.4, leads to the following results: (1) using state-of-the-art im­
plementation of pairings, it seems that the BS and BCNSW-VLR schemes can handle larger
groups than the CG scheme; (2) in small groups with up to 1000 members the BCNSW-VLR
scheme shows better performance and should be preferred over the BS scheme; (3) in groups
with more than 1000 members both pairing-based schemes show similar performance.

15.2.	 Space Requirements for Secret and Public
Parameters

15.2.1.	 Space Requirements for Secret Parameters

This section compares the amount of space, which would be required by each group signature
scheme to store the most significant secret parameters used in its algorithms. These space
requirements are calculated based on the estimated space complexity from Table 10.4 using
concrete parameter lengths, as discussed in Chapter 10.
Table 15.2 summarizes the required amount of space for the group manager’s secret key

gmsk (while also counting storage of secret information that is disclosed during the revocation
procedure) and for the individual signing keys gsk [i].1

Table 15.2.: Space Requirements for Secret Parameters

Group Signature Scheme gmsk with reg or grt gsk [i]

CG
2048-bit modulus
3248-bit modulus

2.41 + 5.15(m − r)
3.58 + 7.49(m − r)

Kb
Kb

6.89 Kb
10.41 Kb

BS 0.35(m − r) Kb 0.68 Kb

BCNSW-VLR 0.65 + 2.40(m − r) Kb 1.38 Kb

m — number of group members; r — number of revoked members.

All three schemes require the group manager to store secret information, whose length de­
pends linearly on the number of unrevoked members, i.e. the difference between the total cur­
rent group size m and the number of currently revoked members r. In the BS scheme, which is
static, the initially required space will only decrease with each revocation event; whereas in the
dynamic CG and BCNSW-VLR schemes it may grow, depending on the population progress

1Note that for the BCNSW-VLR scheme we do not count sizes of ordinary signatures σ̄i which are produced
by member i during the admission procedure and are stored by the group manager as part of reg [i] since the
signature scheme is left unspecified.

Federal Office for Information Security 247

15. Performance and Scalability Comparison

in the group. We observe that the amount of secret information that should be stored on the
group manager’s side in the CG scheme is significantly higher than in both pairing-based con­
structions. A direct comparison of BS and BCNSW-VLR schemes, shows that the BS scheme
is more economical in this respect.
In small groups, with up to 1000 members, these differences are rather unnoticeable, i.e. BS

would require up to 44 KB space, in comparison to about 300 KB for BCNSW-VLR and about
645 KB resp. 937 KB for the CG scheme. In medium groups with up to 100,000 members these
differences would become somewhat noticeable, yet still fairly practical, with space requirements
of up to 4.3 MB for BS, 29.3 MB for BCNSW-VLR, and 62.9 MB resp. 91.5 MB for the CG
scheme. In large groups with up to one million members the corresponding space for secret
information on the group manager’s side would grow to at most 42.8 MB for BS, 293.0 MB for
BCNSW-VLR, and 628.7 MB resp. 914.3 MB for the CG scheme.
In contrast, individual secret signing keys gsk [i] remain of constant length in all three

schemes. The pairing-based BS and BCNSW-VLR schemes clearly outperform the CG scheme
also in this parameter. In particular, their individual secret signing keys of lengths 0.68 Kb
resp. 1.38 Kb can possibly be stored in trusted hardware modules; for example unique en­
dorsement keys that are hard-coded inside modern TPM chips, as specified by TCG (www.
trustedcomputinggroup.org), have sizes of 2 Kb.

Summary. The amount of secret information that has to be stored on the group manager’s
side is linear in all three schemes. Yet, in practice, where the role of the group manager is
typically performed on devices with high computational and storage resources, the impact of
this linear increase remains rather small. All three schemes seem to offer an acceptable overhead
with regard to these space requirements, even for very large groups, whereby the BS scheme is
the most economical one. As for the secret signing keys, we observe that both pairing-based BS
and BCNSW-VLR constructions have very short secret signing keys that could even be encoded
into hardware, for higher protection. Nonetheless, also CG scheme has acceptable storage costs
for individual signing keys on most computing platforms (incl. mobile devices).

15.2.2. Space Requirements for Public Parameters

This section compares space requirements for most significant public parameters of the three
group signature schemes. The amount of space is calculated using the storage costs from
Table 10.4, by considering concrete lengths from Chapter 10. In Table 15.3 we summarize the
amount of space for the group public key gpk , the size of revocation lists RL (applies to BS
and BCNSW-VLR schemes) or update information upd that has to be made public to allow
unrevoked group members to update their secret signing keys (applies to CG scheme), and the
length of the output group signature σ.
All three schemes have group public keys of constant size, whereby the size of gpk in pairing­

based BS and BCNSW-VLR schemes is at least five times smaller than in the CG scheme.
However, up to 33 Kb large group public keys in the CG scheme seem still suitable for most
practical applications.
Similarly, all three constructions output constant-size group signatures. The shortest group

signatures (of only 1.7 Kb length) can be produced with the BS scheme, followed by the

Federal Office for Information Security 248

www.trustedcomputinggroup.org
www.trustedcomputinggroup.org

15. Performance and Scalability Comparison

Table 15.3.: Space Requirements for Public Parameters

Group Signature Scheme gpk RL/upd σ

CG
2048-bit modulus
3248-bit modulus

20.41
32.13

Kb
Kb

1.15r
1.15r

Kb
Kb

14.79
21.82

Kb
Kb

BS 2.75 Kb 0.35r Kb 2.32 Kb

BCNSW-VLR 3.79 Kb 1.04r Kb 1.7 Kb

r — number of revoked members.

BCNSW-VLR scheme, whose signatures are longer by roughly 635 bits. The CG scheme outputs
signatures that are longer by several factors, i.e. between 14.79 Kb and 21.82 Kb, depending
on the setting. Nonetheless, also these lengths seem to be practical for many applications.
In contrast, the amount of published information that handles revocation increases linearly

with the number of revoked members in all three constructions, as also illustrated in Figure
15.5. While the difference between the CG and BCNSW-VLR schemes is not very noticeable
(about 112 bits per revoked user), the BS scheme with only about 360 bits per entry is the most
economical one. Interestingly, such difference between the two pairing-based schemes originates
from the fact that – although the entries in the revocation lists in both cases consist only of
a single element – in the BS scheme this entry is an element from G1, and thus 360 bits long,
whereas in the BCNSW-VLR scheme it belongs to G2, requiring 1064 bits.
Here we remark the significant difference to revocation in classical PKIs (cf. Section 1.1.2),

where revocation is performed by publishing serial numbers of the revoked PKI certificates.
These numbers are of non-cryptographic nature and their lengths are negligible in comparison
to the amount of information that has to be published in a group signature scheme. The
reason for such considerably larger overhead for revocation in group signatures is due to the
fundamental requirement of unlinkability: while PKI certificates are linkable in nature, group
signatures (of unrevoked signers) must remain unlinkable, therefore revocation information
belonging to a particular group member must be of cryptographic nature and should not be
leaked by any public parameters of the scheme or produced group signatures until that group
member is revoked.
In order to illustrate practical impact of the storage costs for RL and upd on the total size

of the group we give one further example. We use the same assumption as in the scalability of
the verification procedure from Section 15.1.4, namely that at any point in time the number
of revoked members does not exceed 10% of the total group size: In small groups with less
than 1000 members the revocation information would require up to 4.4 KB for BS, 13 KB
for BCNSW-VLR, and 14.4 KB for the CG scheme. In medium groups with up to 100, 000
members these space requirements would increase to 437.5 KB for BS, 1.3 MB for BCNSW­
VLR, and 1.4 MB for the CG scheme. In large groups with up to one million members they
would further grow to 4.3 MB for BS, 12.7 MB for BCNSW-VLR, and up to 14.1 MB for the
CG scheme, and in very large groups with e.g. 10 million members, the space overhead would
vary between 42.7 MB for BS and 140.4 MB for the CG scheme.
If we consider now as an example a download rate of 1.8 Mbit/s in a mobile setting, the

Federal Office for Information Security 249

15. Performance and Scalability Comparison

100 MB

10 MB

1 MB

100 KB

10 KB

1 KB

1 Kb

number of revoked users

sp
ac
e
(1

 M
B

 =
 1
02
4
K
B

 =
 1
02
4
· 8

 K
b

 =
 1
02
4
· 8

 ·
10
24

 b
it
s)

|upd | in CG scheme
|RL| in BS scheme

|RL| in BCNSW-VLR scheme

1 1000 100000 1000000

Figure 15.5.: Scalability of Published Revocation Information

download of the complete revocation information with any of the three schemes would require
few milliseconds in small groups, several seconds for medium to large groups, and up to one
minute and more in large or even very large groups with one million members or more. Con­
sidering fast broadband connection with a download rate of 16 Mbit/s, the required time for
a complete download can be reduced to a fraction of a second even for group sizes of up to
100,000 members and to a few seconds or single minutes in large resp. very large groups.

Summary. The required time for a complete download of the public revocation information
in the BS scheme is only one third of the time needed in the CG and BCNSW-VLR schemes.
While this is certainly an interesting point when it comes to the decision, which of the three
schemes shall be used, it seems that with respect to the space requirements and considering
modern technologies in networking power and storage capacity, all three schemes would perform
reasonably well in most practical applications.
Here we discussed the simplest approach where users retrieve the entire revocation infor­

mation, i.e. by downloading it completely in one step. We notice, however, that there are
many other techniques, e.g. those applied in the PKI setting, that would even further reduce
the resulting overhead. For example, one could think of differential updates of the revocation

Federal Office for Information Security 250

15. Performance and Scalability Comparison

information, i.e. users would have to only fetch new revocation information that they haven’t
downloaded yet. Another way to decrease the overhead is to “reset” the group upon fixed time
intervals, in which case all previously published revocation information will become irrelevant.
This approach, however, would introduce additional communication between the current group
members and the group manager for the update of their group membership credentials. Our
analysis demonstrates that even without such methods the overhead in all three schemes seems
not critical for practical purposes.

15.3. Concluding Discussion

Our direct comparison of the three group signature schemes in this chapter shows that the
pairing-based BS and BCNSW-VLR schemes have better performance than the CG scheme,
especially when it comes to the most frequently executed signature generation and verification
algorithms. The two pairing-based constructions can also handle larger group sizes than the
CG scheme, as becomes obvious from our scalability analysis of the verification procedure.
In small groups with up to 1000 members the BCNSW-VLR scheme seems to offer a better
performance, while in larger groups the performance of BS and BCNSW-VLR is widely similar.
Nonetheless, we observe significant loss of performance, when it comes to groups of medium

size, in the range of 100,000 members and more. The expected time for revocation checks in
such groups seems to rule out practical deployment of those schemes, even if we put restrictions
on the amount of revoked members in comparison to the total size of the group (e.g. our
examples with 10% and 25% revoked members) and consider state-of-the-art implementations
in pairing-based cryptography. For example, for groups with about 5500 members and more
on a commodity PC platform and about 13000 members and more if cryptographic operations
are implemented in hardware the required time of more than one second for revocation checks
would already be impractical for many applications. In general, we observe that revocation
remains the major bottleneck of modern group signature schemes and that further research is
urgently needed to design schemes offering better scalability with regard to revocation.
On the other hand, there might be applications, where revocation is not of prime importance.

For example, when the group signature scheme is deployed only for the purpose of anonymity
and the actual accountability of member’s actions, including later revocation of signing rights in
case of misuse, is not required. In such scenarios revocation checks could be safely omitted from
the corresponding verification procedures, whose execution times would then become constant.
All three group signature schemes would then offer fairly practical performance, even in very
large groups with several millions of members, whereby the pairing-based schemes would still
be preferable in practice due to their shorter lengths for the main parameters such as group
public keys, individual secret signing keys, and output group signatures.
Due to its support for dynamic groups, the verifiable opening property, and the slightly better

performance the BCNSW-VLR scheme should probably be preferred over the BS scheme. With
regard to security we observe that both schemes offer insider anonymity; while this is not the
strongest anonymity notion, it is sufficient for most applications. Moreover, an individual secret
signing key gsk [i] in the BCNSW-VLR scheme is about 1067 bits and could potentially be
stored in a tamper-resistant cryptographic hardware chip, which would significantly minimize

Federal Office for Information Security 251

15. Performance and Scalability Comparison

the possibility of its leakage. Both schemes offer full non-frameability — however, in the (static)
BS scheme the group manager’s secret key must be erased after the generation of individual
secret keys. If the group manager is malicious and doesn’t erase its key then framing attacks
against BS users become possible. On the other hand, potential advantage of the BS scheme
is that it offers full traceability, has a somewhat simpler design in comparison to the BCNSW­
VLR scheme, and that it can be used in a distributed mode with two distinct authorities.
Therefore, this scheme is preferable for applications where the management of the group must
be distributed amongst two non-colluding authorities.

Federal Office for Information Security 252

Bibliography

[1]	 M. Abdalla, J. H. An, M. Bellare, and C. Namprempre, From Identification
to Signatures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and
Forward-Security, in EUROCRYPT 2002, vol. 2332 of LNCS, Springer, 2002, pp. 418–433.
23

[2]	 M. Abdalla and B. Warinschi, On the Minimal Assumptions of Group Signature
Schemes, in ICICS 2004, vol. 3269 of LNCS, Springer, 2004, pp. 1–13. 97

[3]	 M. Abe, A Secure Three-Move Blind Signature Scheme for Polynomially Many Signa­
tures, in EUROCRYPT 2001, vol. 2045 of LNCS, Springer, 2001, pp. 136–151. 40

[4]	 M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo,
Structure-Preserving Signatures and Commitments to Group Elements, in CRYPTO 2010,
vol. 6223 of LNCS, Springer, 2010, pp. 209–236. 40

[5]	 M. Abe and M. Ohkubo, A Framework for Universally Composable Non-committing
Blind Signatures, in ASIACRYPT 2009, vol. 5912 of LNCS, Springer, 2009, pp. 435–450.
40

[6]	 M. Abe, M. Ohkubo, and K. Suzuki, 1-out-of-n Signatures from a Variety of Keys,
in ASIACRYPT 2002, vol. 2501 of LNCS, Springer, 2002, pp. 639–645. 41

[7]	 T. Acar, K. Lauter, M. Naehrig, and D. Shumow, Affine Pairings on ARM.
Cryptology ePrint Archive, Report 2011/243, 2011. http://eprint.iacr.org/2011/
243.	 204, 205

[8]	 M. Ajtai, Generating Hard Instances of Lattice Problems (Extended Abstract), in Pro­
ceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC 1996),
ACM, 1996, pp. 99–108. 36

[9]	 Android NDK. Available at http://developer.android.com/sdk/ndk/. 198

[10]	 ANSSI, Mecanismes cryptographiques - Regles et recommandations, 2010. Available at
http://www.ssi.gouv.fr/IMG/pdf/RGS_B_1.pdf. 194

[11]	 G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, A Practical and Provably Se­
cure Coalition-Resistant Group Signature Scheme, in CRYPTO 2000, vol. 1880 of LNCS,
Springer, 2000, pp. 255–270. 31, 101, 102, 105, 113

253

http://eprint.iacr.org/2011/243
http://eprint.iacr.org/2011/243
http://developer.android.com/sdk/ndk/
http://www.ssi.gouv.fr/IMG/pdf/RGS_B_1.pdf

Bibliography

[12]	 G. Ateniese and B. de Medeiros, Efficient Group Signatures without Trapdoors, in
ASIACRYPT 2003, vol. 2894 of LNCS, Springer, 2003, pp. 246–268. 131, 133, 135, 137,
172, 175, 180, 181, 185

[13]	 , A Provably Secure Nyberg-Rueppel Signature Variant with Applications. Cryptology
ePrint Archive, Report 2004/093, 2004. http://eprint.iacr.org/2004/093. 135, 139

[14]	 G. Ateniese, J. Kirsch, and M. Blanton, Secret Handshakes with Dynamic and
Fuzzy Matching, in Network and Distributed System Security Symposium (NDSS 2007),
The Internet Society, 2007. 39

[15]	 G. Ateniese, D. X. Song, and G. Tsudik, Quasi-Efficient Revocation in Group
Signatures, in International Conference on Financial Cryptography and Data Security
(FC 2002), vol. 2357 of LNCS, Springer, 2002, pp. 183–197. 101, 106

[16]	 G. Ateniese and G. Tsudik, Group Signatures á la carte, in ACM-SIAM Symposium
on Discrete Algorithms (SODA 1999), ACM, 1999, pp. 848–849. 101, 102, 172, 175, 180,
181, 185

[17]	 , Some Open Issues and New Directions in Group Signatures, in International Con­
ference on Financial Cryptography and Data Security (FC 1999), vol. 1648 of LNCS,
Springer, 1999, pp. 196–211. 31, 102

[18]	 D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H.-C.
Wong, Secret Handshakes from Pairing-Based Key Agreements, in IEEE Symposium on
Security and Privacy 2003, IEEE CS, 2003, pp. 180–196. 39

[19]	 A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary Gates for
Quantum Computation, Phys. Rev. A, 52 (1995), pp. 3457–3467. 36

[20]	 N. Barić and B. Pfitzmann, Collision-Free Accumulators and Fail-Stop Signature
Schemes Without Trees, in EUROCRYPT 1997, vol. 1233 of LNCS, Springer, 1997,
pp. 480–494. 107

[21]	 M. Bellare and S. Duan, Partial Signatures and their Applications. Cryptology
ePrint Archive, Report 2009/336, 2009. http://eprint.iacr.org/2009/336. 37

[22]	 M. Bellare, D. Micciancio, and B. Warinschi, Foundations of Group Signatures:
Formal Definitions, Simplified Requirements, and a Construction Based on General As­
sumptions, in EUROCRYPT 2003, vol. 2656 of LNCS, Springer, 2003, pp. 614–629. 32,
34, 45, 47, 48, 51, 93, 94, 96, 101, 121, 144, 148

[23]	 M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko, The one-more­
rsa-inversion problems and the security of chaum’s blind signature scheme, J. Cryptology,
16 (2003), pp. 185–215. 40

Federal Office for Information Security 254

http://eprint.iacr.org/2004/093
http://eprint.iacr.org/2009/336

Bibliography

[24]	 M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Design­
ing Efficient Protocols, in ACM Conference on Computer and Communications Security
(ACM CCS 1993), ACM, 1993, pp. 62–73. 83

[25]	 M. Bellare, H. Shi, and C. Zhang, Foundations of Group Signatures: The Case of
Dynamic Groups, in CT-RSA 2005, vol. 3376 of LNCS, Springer, 2005, pp. 136–153. 73,
93, 95, 96, 97, 99, 101, 141

[26]	 J. C. Benaloh and M. de Mare, One-Way Accumulators: A Decentralized Alterna­
tive to Digital Sinatures (Extended Abstract), in EUROCRYPT 1993, vol. 765 of LNCS,
Springer, 1993, pp. 274–285. 107

[27]	 A. Bender, J. Katz, and R. Morselli, Ring Signatures: Stronger Definitions, and
Constructions Without Random Oracles, in TCC 2006, vol. 3876 of LNCS, Springer, 2006,
pp. 60–79. 41

[28]	 V. Benjumea, S. Choi, J. Lopez, and M. Yung, Fair Traceable Multi-Group Signa­
tures, in Financial Cryptography and Data Security (FC 08), vol. 5143 of LNCS, Springer,
2008, pp. 231–246. 42

[29]	 D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum Cryptography,
Springer, 2009. 36

[30]	 P. Bichsel, J. Camenisch, T. Groß, and V. Shoup, Anonymous Credentials on
a Standard Java Card, in ACM Conference on Computer and Communications Security
(ACM CCS 2009), ACM, 2009, pp. 600–610. 38

[31]	 P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi, Get
Shorty via Group Signatures without Encryption, in International Conference on Security
and Cryptography for Networks (SCN 2010), vol. 6280 of LNCS, Springer, 2010, pp. 381–
398. 37, 58, 83, 141, 149, 152, 155, 168, 170, 172, 175, 180, 181, 185, 191, 192, 193, 196,
197, 198, 201, 227, 239

[32]	 BNetzA and BSI, Bekanntmachung zur elektronischen Signatur nach dem Signaturge­
setz und der Signaturverordnung, Preprint at http://www.bundesnetzagentur.de/media/,
(2011). 194, 195, 207, 208

[33]	 A. Boldyreva, Threshold Signatures, Multisignatures and Blind Signatures Based on
the Gap-Diffie-Hellman-Group Signature Scheme, in Public Key Cryptography (PKC
2003), vol. 2567 of LNCS, Springer, 2003, pp. 31–46. 40

[34]	 D. Boneh and X. Boyen, Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles, in EUROCRYPT 2004, vol. 3027 of LNCS, Springer, 2004,
pp. 223–238. 82

[35]	 , Short Signatures Without Random Oracles, in EUROCRYPT 2004, vol. 3027 of
LNCS, Springer, 2004, pp. 56–73. 81

Federal Office for Information Security 255

http://www.bundesnetzagentur.de/media

Bibliography

[36]	 D. Boneh, X. Boyen, and H. Shacham, Short Group Signatures, in CRYPTO 2004,
vol. 3152 of LNCS, Springer, 2004, pp. 41–55. 49, 82, 141, 142, 144, 145, 172, 175, 180,
181, 185

[37]	 D. Boneh, C. Gentry, B. Lynn, and H. Shacham, Aggregate and Verifiably En­
crypted Signatures from Bilinear Maps, in EUROCRYPT 2003, vol. 2656 of LNCS,
Springer, 2003, pp. 416–432. 41

[38]	 D. Boneh and H. Shacham, Group Signatures with Verifier-Local Revocation, in ACM
Conference on Computer and Communications Security (ACM CCS 2004), ACM, 2004,
pp. 168–177. 48, 155, 159, 161, 162, 163, 164, 165, 167, 172, 175, 180, 181, 185, 191, 192,
193, 196, 197, 198, 201, 219, 239

[39]	 X. Boyen and B. Waters, Compact Group Signatures Without Random Oracles, in
EUROCRYPT 2006, vol. 4004 of LNCS, Springer, 2006, pp. 427–444. 141

[40]	 , Full-Domain Subgroup Hiding and Constant-Size Group Signatures, in Public Key
Cryptography (PKC 2007), vol. 4450 of LNCS, Springer, 2007, pp. 1–15. 141, 165

[41]	 R. Bradshaw, J. Holt, and K. Seamons, Concealing Complex Policies with Hidden
Credentials, in ACM Conference on Computer and Communications Security (CCS 2004),
ACM, 2004, pp. 146–157. 39

[42]	 E. Bresson and J. Stern, Efficient Revocation in Group Signatures, in Public Key
Cryptography (PKC 2001), vol. 1992 of LNCS, Springer, 2001, pp. 190–206. 41, 101, 106

[43]	 E. Brickell, L. Chen, and J. Li, A New Direct Anonymous Attestation Scheme
from Bilinear Maps, in International Conference on Trusted Computing - Challenges and
Applications (TRUST 2008), vol. 4968 of LNCS, Springer, 2008, pp. 166–178. 41

[44]	 E. F. Brickell, J. Camenisch, and L. Chen, Direct Anonymous Attestation, in
ACM Conference on Computer and Communications Security (ACM CCS 2004), ACM,
2004, pp. 132–145. 23, 41

[45]	 J. Camenisch, Efficient and Generalized Group Signatures, in EUROCRYPT 1997,
vol. 1233 of LNCS, Springer, 1997, pp. 465–479. 92

[46]	 , Efficient Anonymous Fingerprinting with Group Signatures, in ASIACRYPT 2000,
vol. 1976 of LNCS, Springer, 2000, pp. 415–428. 23

[47]	 , Anonymous Credentials: Opportunities and Challenges, in IFIP TC-11 21st Inter­
national Information Security Conference (SEC 2006), vol. 201 of IFIP, Springer, 2006,
p. 460. 38

[48]	 J. Camenisch and T. Groß, Efficient Attributes for Anonymous Credentials, in ACM
Conference on Computer and Communications Security, ACM, 2008, pp. 345–356. 38

Federal Office for Information Security 256

Bibliography

[49]	 J. Camenisch and J. Groth, Group Signatures: Better Efficiency and New Theoretical
Aspects, in International Conference on Security in Communication Networks (SCN 2004),
vol. 3352 of LNCS, Springer, 2004, pp. 120–133. 101, 118, 119, 122, 172, 175, 180, 181,
185, 191, 192, 193, 195, 198, 201, 207, 210, 239

[50]	 J. Camenisch and E. V. Herreweghen, Design and Implementation of the Idemix
Anonymous Credential System, in ACM Conference on Computer and Communications
Security (ACM CCS 2002), ACM, 2002, pp. 21–30. 23, 38

[51]	 J. Camenisch, M. Kohlweiss, and C. Soriente, An Accumulator Based on Bilinear
Maps and Efficient Revocation for Anonymous Credentials, in International Conference
on Practice and Theory in Public Key Cryptography (PKC 2009), vol. 5443 of LNCS,
Springer, 2009, pp. 481–500. 38

[52]	 , Solving Revocation with Efficient Update of Anonymous Credentials, in International
Conference of Security and Cryptography in Networks (SCN 2010), vol. 6280 of LNCS,
Springer, 2010, pp. 454–471. 38

[53]	 J. Camenisch, M. Koprowski, and B. Warinschi, Efficient Blind Signatures With­
out Random Oracles, in SCN 2004, vol. 3352 of LNCS, Springer, 2004, pp. 134–148.
40

[54]	 J. Camenisch and A. Lysyanskaya, An Efficient System for Non-transferable Anony­
mous Credentials with Optional Anonymity Revocation, in EUROCRYPT 2001, vol. 2045
of LNCS, Springer, 2001, pp. 93–118. 38

[55]	 , A Signature Scheme with Efficient Protocols, in International Conference on Secu­
rity in Communication Networks (SCN 2002), vol. 2576 of LNCS, Springer, 2002, pp. 268–
289. 119, 120, 207, 209

[56]	 , Dynamic Accumulators and Application to Efficient Revocation of Anonymous Cre­
dentials, in CRYPTO 2002, vol. 2442 of LNCS, Springer, 2002, pp. 61–76. 38, 101, 106,
107, 109, 110, 113, 122

[57]	 , Signature Schemes and Anonymous Credentials from Bilinear Maps, in CRYPTO
2004, vol. 3152 of LNCS, Springer, 2004, pp. 56–72. 38, 141, 145, 146, 147, 148, 149, 169,
172, 175, 180, 181, 185, 227

[58]	 J. Camenisch and M. Michels, A Group Signature Scheme with Improved Efficiency,
in ASIACRYPT 1998, vol. 1514 of LNCS, Springer, 1998, pp. 160–174. 101, 102

[59]	 , Proving in Zero-Knowledge that a Number Is the Product of Two Safe Primes, in
EUROCRYPT 1999, vol. 1592 of LNCS, Springer, 1999, pp. 107–122. 103, 113

[60]	 , Separability and Efficiency for Generic Group Signature Schemes, in CRYPTO
1999, vol. 1666 of LNCS, Springer, 1999, pp. 413–430. 93

Federal Office for Information Security 257

Bibliography

[61]	 J. Camenisch and M. Stadler, Efficient Group Signature Schemes for Large Groups,
in CRYPTO 1997, vol. 1294 of LNCS, Springer, 1997, pp. 410–424. 101, 102, 106

[62]	 S. Canard, B. Schoenmakers, M. Stam, and J. Traoré, List Signature Schemes,
Discrete Applied Mathematics, 154 (2006), pp. 189–201. 23

[63]	 S. Canard and J. Traoré, On Fair E-cash Systems Based on Group Signature
Schemes, in Australasian Conference on Information Security and Privacy (ACISP 2003),
vol. 2727 of LNCS, Springer, 2003, pp. 237–248. 23

[64]	 C. Castelluccia, S. Jarecki, and G. Tsudik, Secret Handshakes from CA-Oblivious
Encryption, in ASIACRYPT 2004, vol. 3329 of LNCS, Springer, 2004, pp. 293–307. 39

[65]	 D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Q. Nguyen, Pail­
lier’s Cryptosystem Revisited, in ACM Conference on Computer and Communications
Security (ACM CCS 2001), ACM, 2001, pp. 206–214. 115, 117, 118, 176

[66]	 N. Chandran, J. Groth, and A. Sahai, Ring Signatures of Sub-linear Size Without
Random Oracles, in ICALP 2007, vol. 4596 of LNCS, Springer, 2007, pp. 423–434. 41, 42

[67]	 M. Chase and A. Lysyanskaya, On Signatures of Knowledge, in CRYPTO 2006,
vol. 4117 of LNCS, Springer, 2006, pp. 78–96. 92

[68]	 D. Chaum, Blind Signatures for Untraceable Payments, in CRYPTO 1982, 1982, pp. 199–
203. 40

[69]	 , Security Without Identification: Transaction Systems to Make Big Brother Obsolete,
Commununications of the ACM, 28 (1985), pp. 1030–1044. 38

[70]	 D. Chaum and J.-H. Evertse, A secure and privacy-protecting protocol for transmit­
ting personal information between organizations, in CRYPTO 1986, vol. 263 of LNCS,
Springer, 1986, pp. 118–167. 38

[71]	 D. Chaum and E. van Heyst, Group Signatures, in EUROCRYPT 1991, vol. 547 of
LNCS, Springer, 1991, pp. 257–265. 21, 30, 31, 32, 101

[72]	 L. Chen, A DAA Scheme Requiring Less TPM Resources, in International Conference
on Information Security and Cryptology (Inscrypt 2009), vol. 6151 of LNCS, Springer,
2009, pp. 350–365. 41

[73]	 L. Chen and T. P. Pedersen, New Group Signature Schemes, in EUROCRYPT 1994,
vol. 950 of LNCS, Springer, 1994, pp. 171–181. 32, 131

[74]	 S. Choi, K. Park, and M. Yung, Short Traceable Signatures Based on Bilinear Pair­
ings, in IWSEC 2006, vol. 4266 of LNCS, Springer, 2006, pp. 88–103. 42

[75]	 S. Chow, Real Traceable Signatures, in Selected Areas in Cryptography (SAC 2009),
vol. 5867 of LNCS, Springer, 2009, pp. 92–107. 42

Federal Office for Information Security 258

Bibliography

[76]	 S. S. M. Chow, V. K. Wei, J. K. Liu, and T. H. Yuen, Ring signatures without
random oracles, in ACM Symposium on Information, Computer and Communications
Security (ASIACCS 2006), ACM, 2006, pp. 297–302. 41

[77]	 R. Cramer and V. Shoup, A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack, in CRYPTO 1998, vol. 1462 of LNCS,
Springer, 1998, pp. 13–25. 141, 146, 147, 148

[78]	 L. Dallot and D. Vergnaud, Provably secure code-based threshold ring signatures,
in Cryptography and Coding, vol. 5921 of LNCS, Springer, 2009, pp. 222–235. 41

[79]	 I. Damg̊ard, Payment Systems and Credential Mechanisms with Provable Security
Against Abuse by Individuals, in CRYPTO 1988, vol. 403 of LNCS, Springer, 1988,
pp. 328–335. 38

[80]	 I. Damg̊ard and E. Fujisaki, A Statistically-Hiding Integer Commitment Scheme
Based on Groups with Hidden Order, in ASIACRYPT 2002, vol. 2501 of LNCS, Springer,
2002, pp. 125–142. 115, 117

[81] C. Delerablée and D. Pointcheval, Dynamic Fully Anonymous Short Group Sig­
natures, in VIETCRYPT 2006, vol. 4341 of LNCS, Springer, 2006, pp. 193–210. 141

[82]	 D. Deutsch, Quantum Theory, the Church-Turing Principle and the Universal Quantum
Computer, Proc. of the Royal Society of London. A. Mathematical and Physical Sciences,
400 (1985), pp. 97–117. 36

[83]	 X. Ding, G. Tsudik, and S. Xu, Leak-Free Group Signatures with Immediate Revo­
cation, in International Conference on Distributed Computing Systems (ICDCS 2004),
IEEE CS, 2004, pp. 608–615. 30, 43

[84]	 , Leak-Free Mediated Group Signatures, Journal of Computer Security, 17 (2009),
pp. 489–514. 30, 43

[85]	 Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup, Anonymous Identification in
Ad Hoc Groups, in EUROCRYPT 2004, vol. 3027 of LNCS, Springer, 2004, pp. 609–626.
41

[86]	 S. Duquesne and N. Guillermin, A FPGA pairing implementation using the Residue
Number System. Cryptology ePrint Archive, Report 2011/176, 2011. http://eprint.
iacr.org/2011/176. 204, 205

[87]	 ECRYPT II, Yearly Report on Algorithms and Keysizes (2009-2010). Available at http:
//www.ecrypt.eu.org/. 194, 195, 207, 208

[88]	 T. El Gamal, A Public Key Cryptosystem and a Signature Scheme based on Discrete
Logarithms, IEEE Transactions on Information Theory, 31 (1985), pp. 469–472. 80, 104

Federal Office for Information Security 259

http://eprint.iacr.org/2011/176
http://eprint.iacr.org/2011/176
http://www.ecrypt.eu.org/
http://www.ecrypt.eu.org/

Bibliography

[89]	 A. Fiat and A. Shamir, How to Prove Yourself: Practical Solutions to Identification
and Signature Problems, in CRYPTO 1986, vol. 263 of LNCS, Springer, 1986, pp. 186–
194. 23, 90, 92

[90]	 M. Fischlin, Round-Optimal Composable Blind Signatures in the Common Reference
String Model, in CRYPTO 2006, vol. 4117 of LNCS, Springer, 2006, pp. 60–77. 40

[91]	 , Anonymous Signatures Made Easy, in Public Key Cryptography (PKC 2007),
vol. 3958 of LNCS, 2007, pp. 31–42. 37

[92]	 D. Freeman, M. Scott, and E. Teske, A Taxonomy of Pairing-Friendly Elliptic
Curves, Journal of Cryptology, 23 (2010), pp. 224–280. 194, 196, 197

[93]	 J. Furukawa and H. Imai, An Efficient Group Signature Scheme from Bilinear Maps,
in Australasian Conference on Information Security and Privacy (ACISP 2005), vol. 3574
of LNCS, Springer, 2005, pp. 455–467. 141

[94]	 J. Furukawa and S. Yonezawa, Group Signatures with Separate and Distributed
Authorities, in International Conference on Security in Communication Networks (SCN
2004), vol. 3352 of LNCS, Springer, 2004, pp. 77–90. 131, 136, 138, 140, 172, 175, 180,
181, 185

[95]	 S. D. Galbraith, K. G. Paterson, and N. P. Smart, Pairings for Cryptographers,
Discrete Applied Mathematics, 156 (2008), pp. 3113–3121. 81

[96]	 D. Galindo, B. Libert, M. Fischlin, G. Fuchsbauer, A. Lehmann, M. Man­
ulis, and D. Schr¨ Newoder, Public-Key Encryption with Non-interactive Opening:
Constructions and Stronger Definitions, in AFRICACRYPT 2010, vol. 6055 of LNCS,
Springer, May 2010, pp. 333–350. 96

[97]	 C.-z. Gao, Z.-a. Yao, and L. Li, A Ring Signature Scheme Based on the Nyberg-
Rueppel Signature Scheme, in ACNS 2003, vol. 2846 of LNCS, Springer, 2003, pp. 169–
175. 41

[98]	 S. Garg, V. Rao, A. Sahai, D. Schröder, and D. Unruh, Round Optimal Blind
Signatures, in CRYPTO 2011, vol. 6841 of Lecture Notes in Computer Science, Springer,
2011, pp. 630–648. 40

[99]	 GCC, the GNU Compiler Collection. Available at http://gcc.gnu.org/. 197, 198

[100]	 H. Ge and S. Tate, Traceable Signature: Better Efficiency and Beyond, in Computa­
tional Science and Its Applications (ICCSA 2006), vol. 3982 of LNCS, Springer, 2006,
pp. 327–337. 42

[101]	 GMP — The GNU Multiple Precision Arithmetic Library. Available at http://gmplib.
org/. 198, 203

Federal Office for Information Security 260

http://gcc.gnu.org/
http://gmplib.org/
http://gmplib.org/

Bibliography

[102]	 D. M. Gordon, A Survey of Fast Exponentiation Methods, Journal of Algorithms, 27
(1998), pp. 129–146. 202, 204

[103]	 S. D. Gordon, J. Katz, and V. Vaikuntanathan, A Group Signature Scheme from
Lattice Assumptions, in ASIACRYPT 2010, vol. 6477 of LNCS, Springer, 2010, pp. 395–
412. 36

[104]	 R. Granger, D. Page, and N. P. Smart, High Security Pairing-Based Cryptography
Revisited, in 7th International Symposium on Algorithmic Number Theory (ANTS-VII),
vol. 4076 of LNCS, Springer, 2006, pp. 480–494. 194

[105]	 J. Groth, Fully Anonymous Group Signatures Without Random Oracles, in ASI­
ACRYPT 2007, vol. 4833 of LNCS, Springer, 2007, pp. 164–180. 141

[106]	 D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptogra­
phy, Springer, 2004. 204

[107]	 C. Hazay, J. Katz, C.-Y. Koo, and Y. Lindell, Concurrently-Secure Blind Sig­
natures Without Random Oracles or Setup Assumptions, in Theory of Cryptography
Conference (TCC 2007), vol. 4392 of LNCS, Springer, 2007, pp. 323–341. 40

S´[108]	 J. Herranz and G. aez, Forking Lemmas for Ring Signature Schemes, in IN­
DOCRYPT 2003, vol. 2904 of LNCS, Springer, 2003, pp. 266–279. 41

[109]	 S. Jarecki, J. Kim, and G. Tsudik, Group Secret Handshakes or Affiliation-Hiding
Authenticated Group Key Agreement, in CT-RSA 2007, vol. 4377 of LNCS, Springer,
2007, pp. 287–308. 39

[110]	 , Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange, in CT­
RSA 2008, vol. 4964 of LNCS, Springer, 2008, pp. 352–369. 39

[111]	 S. Jarecki and X. Liu, Unlinkable Secret Handshakes and Key-Private Group Key
Management Schemes, in 5th Intl. Conference on Applied Cryptography and Network
Security (ACNS 2007), vol. 4521 of LNCS, Springer, 2007, pp. 270–287. 39

[112]	 , Affiliation-Hiding Envelope and Authentication Schemes with Efficient Support for
Multiple Credentials, in ICALP (2), vol. 5126 of LNCS, Springer, 2008, pp. 715–726. 39

[113]	 , Private Mutual Authentication and Conditional Oblivious Transfer, in CRYPTO
2009, vol. 5677 of LNCS, Springer, 2009, pp. 90–107. 39

[114]	 A. Juels, M. Luby, and R. Ostrovsky, Security of Blind Digital Signatures, in
CRYPTO 1997, vol. 1294 of LNCS, Springer, 1997, pp. 150–164. 40

[115]	 J. Katz, Digital Signatures, Springer, 2010. 84

[116]	 J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman &
Hall/CRC, 2007. 84

Federal Office for Information Security 261

Bibliography

[117]	 A. Kiayias, Y. Tsiounis, and M. Yung, Traceable Signatures, in EUROCRYPT 2004,
vol. 3027 of LNCS, Springer, 2004, pp. 571–589. 42, 43

[118]	 A. Kiayias and M. Yung, Extracting Group Signatures from Traitor Tracing Schemes,
in EUROCRYPT 2003, vol. 2656 of LNCS, Springer, 2003, pp. 630–648. 23

[119]	 , Efficient Secure Group Signatures with Dynamic Joins and Keeping Anonymity
Against Group Managers, in Mycrypt 2005, vol. 3715 of LNCS, Springer, 2005, pp. 151–
170. 101, 125, 126, 172, 175, 180, 181, 185

[120]	 , Group Signatures with Efficient Concurrent Join, in EUROCRYPT 2005, vol. 3494
of LNCS, Springer, 2005, pp. 198–214. 141

[121]	 , Secure Scalable Group Signature with Dynamic Joins and Separable Authorities,
IJSN, 1 (2006), pp. 24–45. 101, 125, 126

[122]	 A. Kiayias and H.-S. Zhou, Concurrent Blind Signatures Without Random Oracles,
in International Conference on Security and Cryptography for Networks (SCN 2006),
vol. 4116 of LNCS, Springer, 2006, pp. 49–62. 40

[123]	 , Equivocal Blind Signatures and Adaptive UC-Security, in Theory of Cryptography
Conference (TCC 2008), vol. 4948 of LNCS, Springer, 2008, pp. 340–355. 40

[124]	 J. Kilian and E. Petrank, Identity Escrow, in CRYPTO 1998, vol. 1462 of LNCS,
Springer, 1998, pp. 169–185. 22

[125]	 K.-C. Lee, H.-A. Wen, and T. Hwang, Convertible ring signature, IEE Proceedings
Communications, 152 (2005), pp. 411–414. 41

[126]	 M.-F. Lee, N. P. Smart, and B. Warinschi, The Fiat-Shamir Transform for Group
and Ring Signature Schemes, in International Conference on Security and Cryptography
for Networks (SCN 2010), vol. 6280 of LNCS, Springer, 2010, pp. 363–380. 22, 23

[127]	 A. K. Lenstra, Key Lengths, in Handbook of Information Security, H. Bidgoli, ed.,
Wiley, 2004, pp. 617–635. 194

[128]	 A. K. Lenstra and E. R. Verheul, Selecting Cryptographic Key Sizes, Journal of
Cryptology, 14 (2001), pp. 255–293. 194

[129]	 A. Leung, L. Chen, and C. J. Mitchell, On a Possible Privacy Flaw in Direct
Anonymous Attestation (DAA), in International Conference on Trusted Computing -
Challenges and Applications (TRUST 2008), vol. 4968 of LNCS, Springer, 2008, pp. 179–
190. 41

[130]	 X. Li, D. Zheng, K. Chen, and J. Li, Democratic Group Signatures with Collective
Traceability, Computers & Electrical Engineering, 35 (2009), pp. 664–672. 29

Federal Office for Information Security 262

Bibliography

[131]	 B. Libert and D. Vergnaud, Group Signatures with Verifier-Local Revocation and
Backward Unlinkability in the Standard Model, in International Conference on Cryptology
and Network Security (CANS 2009), vol. 5888 of LNCS, Springer, 2009, pp. 498–517. 155,
165

[132]	 J. Liu, V. Wei, and D. Wong, Linkable Spontaneous Anonymous Group Signature for
Ad Hoc Groups, in Australasian Conference on Information Security and Privacy (ACISP
2004), vol. 3108 of LNCS, Springer, 2004, pp. 325–335. 41

[133]	 A. Lysyanskaya, Signature Schemes and Applications to Cryptographic Protocol Design,
PhD thesis, Massachusetts Institute of Technology, 2002. AAI0804606. 119, 120, 207

[134]	 A. Lysyanskaya and Z. Ramzan, Group Blind Digital Signatures: A Scalable Solution
to Electronic Cash, in Financial Cryptography and Data Security (FC 1998), vol. 1465 of
LNCS, Springer, 1998, pp. 184–197. 29, 40

[135]	 A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf, Pseudonym Systems, in
Selected Areas in Cryptography (SAC 1999), LNCS, Springer, 1999, pp. 184–199. 38, 82

[136]	 G. Maitland and C. Boyd, Fair Electronic Cash Based on a Group Signature Scheme,
in International Conference on Information and Communications Security (ICICS 2001),
vol. 2229 of LNCS, Springer, 2001, pp. 461–465. 23

[137]	 M. Manulis, Democratic Group Signatures: On an Example of Joint Ventures, in ACM
Symposium on Information, Computer and Communications Security, (ASIACCS 2006),
ACM, 2006, p. 365. Available at http://eprint.iacr.org/2005/446.pdf. 29

[138]	 M. Manulis, B. Pinkas, and B. Poettering, Privacy-Preserving Group Discov­
ery with Linear Complexity, in International Conference on Applied Cryptography and
Network Security (ACNS 2010), vol. 6123 of LNCS, Springer, 2010, pp. 420–437. 39

[139]	 M. Manulis and B. Poettering, Affiliation-Hiding Authentication with Minimal
Bandwidth Consumption, in IFIP WG 11.2 International Workshop on Information Secu­
rity Theory and Practice (WISTP 2011), vol. 6633 of LNCS, Springer, 2011, pp. 85–99.
39

[140]	 , Practical Affiliation-Hiding Authentication from Improved Polynomial Interpola­
tion, in ACM Symposium on Information, Computer and Communications Security (ASI­
ACCS 2011), ACM, 2011, pp. 286–295. 39

[141]	 M. Manulis, B. Poettering, and G. Tsudik, Affiliation-Hiding Key Exchange with
Untrusted Group Authorities, in International Conference on Applied Cryptography and
Network Security (ACNS 2010), vol. 6123 of LNCS, Springer, 2010, pp. 402–419. 39

[142]	 , Taming Big Brother Ambitions: More Privacy for Secret Handshakes, in 10th Pri­
vacy Enhancing Technologies Symposium (PETS 2010), vol. 6205 of LNCS, Springer,
2010, pp. 149–165. 39

Federal Office for Information Security 263

http://eprint.iacr.org/2005/446.pdf

Bibliography

[143]	 M. Manulis, A.-R. Sadeghi, and J. Schwenk, Linkable Democratic Group Signa­
tures, in 2nd Information Security Practice and Experience Conference (ISPEC 2006),
vol. 3903 of LNCS, Springer, 2006, pp. 187–201. 29

[144]	 A. Miyaji, M. Nakabayashi, and S. Takano, New Explicit Conditions of Elliptic
Curve Traces for FR-Reduction, IEICE TRANSACTIONS on Fundamentals A, E84-A
(2001), pp. 1234–1243. 203

[145]	 M. Naehrig, R. Niederhagen, and P. Schwabe, New Software Speed Records for
Cryptographic Pairings, in LATINCRYPT, 2010, pp. 109–123. 205, 223, 224, 234, 235,
240, 241, 243, 245, 246

[146]	 T. Nakanishi and N. Funabiki, Verifier-Local Revocation Group Signature Schemes
with Backward Unlinkability from Bilinear Maps, in ASIACRYPT 2005, vol. 3788 of
LNCS, Springer, 2005, pp. 533–548. 155, 157, 161, 165, 166, 167, 168, 172, 175, 180, 181,
185

[147]	 , A Short Verifier-Local Revocation Group Signature Scheme with Backward Unlinka­
bility, in International Workshop on Security (IWSEC 2006), vol. 4266 of LNCS, Springer,
2006, pp. 17–32. 155

[148]	 T. Nakanishi, F. Kubooka, N. Hamada, and N. Funabiki, Group Signature
Schemes with Membership Revocation for Large Groups, in Australasian Conference on
Information Security and Privacy (ACISP 2005), vol. 3574 of LNCS, Springer, 2005,
pp. 443–454. 101

[149]	 T. Nakanishi and Y. Sugiyama, A Group Signature Scheme with Efficient Mem­
bership Revocation for Reasonable Groups, in Australasian Conference on Information
Security and Privacy (ACISP 2004), vol. 3108 of LNCS, Springer, 2004, pp. 336–347. 101

[150]	 K. Q. Nguyen and J. Traoré, An Online Public Auction Protocol Protecting Bidder
Privacy, in Australasian Conference on Information Security and Privacy (ACISP 2000),
vol. 1841 of LNCS, Springer, 2000, pp. 427–442. 23

[151]	 L. Nguyen and R. Safavi-Naini, Efficient and Provably Secure Trapdoor-Free Group
Signature Schemes from Bilinear Pairings, in ASIACRYPT 2004, vol. 3329 of LNCS,
Springer, 2004, pp. 372–386. 141

[152]	 NIST, Recommendation for Key Management. Available at http://csrc.nist.gov/
groups/ST/toolkit/key_management.html. 194

[153]	 NSA, Fact Sheet Suite B Cryptography, 2010. Available at http://www.nsa.gov/ia/
programs/suiteb_cryptography/index.shtml. 194

[154]	 K. Nyberg and R. Rueppel, Message Recovery for Signature Schemes Based on the
Discrete Logarithm Problem, in EUROCRYPT 1994, vol. 950 of LNCS, Springer, 1995,
pp. 182–193. 133, 137

Federal Office for Information Security 264

http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

Bibliography

[155]	 T. Okamoto, Efficient Blind and Partially Blind Signatures Without Random Oracles,
in Theory of Cryptography Conference (TCC 2006), vol. 3876 of LNCS, Springer, 2006,
pp. 80–99. 40

[156]	 P. Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,
in EUROCRYPT 1999, vol. 1592 of LNCS, Springer, 1999, pp. 223–238. 115

[157]	 PBC — The Pairing-Based Cryptography Library. Available at http://crypto.
stanford.edu/pbc/. 198, 203

[158]	 T. P. Pedersen, A Threshold Cryptosystem without a Trusted Party., in EUROCRYPT
1991, vol. 547 of LNCS, Springer, 1991, pp. 522–526. 140

[159]	 , Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing, in
CRYPTO 1991, vol. 576 of LNCS, Springer, 1991, pp. 129–140. 86, 104, 137, 139

[160]	 H. Petersen, How to Convert any Digital Signature Scheme into a Group Signature
Scheme, in Security Protocols Workshop 1997, vol. 1361 of LNCS, Springer, 1997, pp. 177–
190. 131

[161]	 D. Pointcheval and J. Stern, Security Arguments for Digital Signatures and Blind
Signatures, Journal of Cryptology, 13 (2000), pp. 361–396. 40

[162]	 R. Rivest, A. Shamir, and Y. Tauman, How to Leak a Secret, in ASIACRYPT 2001,
vol. 2248 of LNCS, Springer, 2001, pp. 552–565. 41

[163]	 J. Rompel, One-Way Functions are Necessary and Sufficient for Secure Signatures, in
22nd Annual ACM Symposium on Theory of Computing (STOC 1990), ACM, 1990,
pp. 387–394. 97

[164] M. Rückert, Lattice-Based Blind Signatures, in ASIACRYPT 2010, vol. 6477 of LNCS,
Springer, 2010, pp. 413–430. 40

[165]	 A. Sahai, Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security, in 40th Annual Symposium on Foundations of Computer Science
(FOCS 1999), IEEE, 1999, pp. 543–553. 96, 100

[166]	 V. Saraswat and A. Yun, Anonymous Signatures Revisited, in International Confer­
ence on Provable Security (ProvSec 2009), vol. 5848 of LNCS, Springer, 2009, pp. 140–153.
37

[167]	 C. Schnorr and M. Jakobsson, Security of Signed ElGamal Encryption, in ASI­
ACRYPT 2000, vol. 1976 of LNCS, Springer, 2000, pp. 73–89. 139

[168]	 M. Scott, N. Costigan, and W. Abdulwahab, Implementing Cryptographic Pair­
ings on Smartcards, in CHES, 2006, pp. 134–147. 204, 205

Federal Office for Information Security 265

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/

Bibliography

[169]	 P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Loga­
rithms on a Quantum Computer, SIAM Journal on Computing, 26 (1997), pp. 1484–1509.
36

[170]	 V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems, in EURO­
CRYPT 1997, vol. 1233 of LNCS, Springer, 1997, pp. 256–266. 138, 139

[171]	 V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge
University Press, 2008. Available at http://www.shoup.net/ntb/. 79, 109, 114

[172]	 R. D. Silverman, Exposing the Mythical MIPS Year, IEEE Computer, 32 (1999). 194

[173]	 B. Smyth, M. Ryan, and L. Chen, Direct Anonymous Attestation (DAA): Ensuring
Privacy with Corrupt Administrators, in 4th European Workshop Security and Privacy in
Ad-hoc and Sensor Networks (ESAS 2007), vol. 4572 of LNCS, Springer, 2007, pp. 218–
231. 41

[174]	 J. Traoré, Group Signatures and Their Relevance to Privacy-Protecting Off-Line Elec­
tronic Cash Systems, in Australasian Conference on Information Security and Privacy
(ACISP 1999), vol. 1587 of LNCS, Springer, 1999, pp. 228–243. 23

[175]	 Trusted Computing Group, Trusted Computing Platform Alliance (TCPA) main
specification. http://www.trustedcomputinggroup.org. 40

[176]	 P. Tsang and V. Wei, Short Linkable Ring Signatures for E-Voting, E-Cash and
Attestation, in ISPEC 2005, vol. 3439 of LNCS, Springer, 2005, pp. 48–60. 41

[177]	 P. Tsang, V. Wei, T. Chan, M. Au, J. Liu, and D. Wong, Separable Linkable
Threshold Ring Signatures, in INDOCRYPT 2004, vol. 3348 of LNCS, Springer, 2005,
pp. 337–376. 41

[178]	 G. Tsudik and S. Xu, Accumulating Composites and Improved Group Signing, in ASI­
ACRYPT 2003, vol. 2894 of LNCS, Springer, 2003, pp. 269–286. 101, 111, 112, 113, 116,
117, 172, 175, 180, 181, 185

[179]	 , A Flexible Framework for Secret Handshakes, in 6th Intl. Workshop on Privacy
Enhancing Technologies (PET 2006), vol. 4258 of LNCS, Springer, 2006, pp. 295–315. 39

[180]	 D. Vergnaud, RSA-Based Secret Handshakes, in Intl. Workshop on Coding and Cryp­
tography (WCC 2005), vol. 3969 of LNCS, Springer, 2005, pp. 252–274. 39

[181]	 L. von Ahn, A. Bortz, N. Hopper, and K. O’Neill, Selectively traceable
anonymity, in Privacy Enhancing Technologies, vol. 4258 of LNCS, Springer, 2006,
pp. 208–222. 42

[182]	 V. Wei, Tracing-by-Linking Group Signatures, in Information Security, vol. 3650 of Lec­
ture Notes in Computer Science, Springer Berlin / Heidelberg, 2005, pp. 149–163. 42

Federal Office for Information Security 266

http://www.shoup.net/ntb/
http://www.trustedcomputinggroup.org

Bibliography

[183]	 D. Wong, K. Fung, J. Liu, and V. Wei, On the RS-Code Construction of Ring
Signature Schemes and a Threshold Setting of RST, in ICICS 2003, vol. 2836 of LNCS,
Springer, 2003, pp. 34–46. 41

[184]	 S. Xu and M. Yung, k-Anonymous Secret Handshakes with Reusable Credentials, in
ACM Conference on Computer and Communications Security (ACM CCS 2004), ACM,
2004, pp. 158–167. 39

[185]	 X. xue Li, H. feng Qian, and J. hua Li, Democratic Group Signatures with Threshold
Traceability, Journal of Shanghai Jiaotong University (Science), 14 (2009), pp. 98–101.
Available at http://eprint.iacr.org/2008/112.pdf. 29

[186]	 G. Yang, D. S. Wong, X. Deng, and H. Wang, Anonymous Signature Schemes, in
Public Key Cryptography (PKC 2006), vol. 3958 of LNCS, Springer, 2006, pp. 347–363.
37

[187]	 G. X. Yao, J. Fan, R. C. Cheung, and I. Verbauwhede, A High Speed Pairing Co­
processor Using RNS and Lazy Reduction. Cryptology ePrint Archive, Report 2011/258,
2011. http://eprint.iacr.org/2011/258. 204, 205, 223, 224, 234, 235, 240, 243, 245,
246

[188]	 C. Zhang, Y. Liu, and D. He, A New Verifiable Ring Signature Scheme Based on
Nyberg-Rueppel Scheme, in Signal Processing, 2006 8th International Conference on,
vol. 4, IEEE, 2006, pp. 16–20. 41

[189]	 R. Zhang and H. Imai, Strong Anonymous Signatures, in International Conference on
Information Security and Cryptology (Inscrypt 2008), vol. 5487 of LNCS, Springer, 2009,
pp. 60–71. 37

Federal Office for Information Security 267

http://eprint.iacr.org/2008/112.pdf
http://eprint.iacr.org/2011/258

	List of Figures
	List of Tables
	List of Main Symbols and Notations
	Group Signatures: Authentication with Privacy
	Introduction and Background
	Authentication with Digital Signatures
	Digital Signatures
	Public Key Infrastructures
	Privacy Limitations

	Group Signatures: Authentication with Privacy
	Group-based Authentication
	Concept of Group Signatures
	Applications of Group Signatures

	Classification of Group Signature Schemes
	Static Group Signatures
	Dynamic Group Signatures
	Group Signatures with Verifiable Opening
	Group Signatures with Distributed Authorities
	Group Signatures with Special Properties

	Intuitive Security Requirements for Group Signatures
	Unforgeability of Signatures
	Exculpability
	Traceability of Signers
	Coalition Resistance
	Protection against Framing Attacks
	Anonymity of Signers
	Unlinkability of Signatures

	Group Signatures and Provable Security
	Computational Security and Adversarial Experiments
	Formal Security Requirements
	Group Signatures and Quantum Computers

	Related Approaches for Authentication with Privacy
	Anonymous Signatures
	Anonymous Credentials
	Affiliation-Hiding Authentication
	Blind Signatures
	Direct Anonymous Attestation
	Ring Signatures
	Traceable Signatures

	Group Signatures: Definitions and Security Models
	Static Group Signature Schemes
	Algorithms of Static Schemes and Their Correctness Property
	Adversary Model and Oracles for Static Schemes
	Anonymity Definitions for Static Schemes
	Traceability Definitions for Static Schemes
	Non-Frameability Definitions for Static Schemes

	Dynamic Group Signature Schemes
	Algorithms of Dynamic Schemes and Their Correctness Property
	Optional Algorithms for Membership Revocation
	Adversary Model and Oracles for Dynamic Schemes
	Anonymity Definitions for Dynamic Schemes
	Traceability Definitions for Dynamic Schemes
	Non-Frameability Definitions for Dynamic Schemes

	Group Signature Schemes with Verifiable Opening
	Algorithms of VO-Schemes and Their Correctness Property
	Optional Algorithms for User PKI
	Adversary Model and Oracles for VO-Schemes
	Anonymity Definitions for VO-Schemes
	Traceability Definitions for VO-Schemes
	Non-Frameability Definitions for VO-Schemes

	Group Signature Schemes with Distributed Authorities
	Algorithms of DA-Schemes and Their Correctness Property
	Adversary Model and Oracles for DA-Schemes
	Anonymity Definitions for DA-Schemes
	Traceability Definitions for DA-Schemes
	Non-Frameability Definitions for DA-Schemes

	Cryptographic Foundations and Hardness Assumptions
	General Hardness Assumptions
	One-Way Functions
	Trapdoor Permutations

	Number-Theoretic Hardness Assumptions
	Assumptions in the RSA Setting
	Assumptions in the DL Setting
	Assumptions in the Setting of Bilinear Maps

	Hash Functions
	The Random Oracle Model

	Digital Signatures
	Public-Key Encryption
	Commitment Schemes
	Zero-Knowledge Proofs and Signatures of Knowledge
	Zero-Knowledge Proofs of Knowledge (ZKPoK)
	Non-Interactive Zero-Knowledge Proofs of Knowledge (NIZKPoK)
	Signatures of Knowledge (SoK)

	Group Signatures based on General Assumptions
	The Bellare-Micciancio-Warinschi Scheme
	The BMW Scheme
	Security of the BMW Scheme

	The Bellare-Shi-Zhang Scheme
	The BSZ Scheme
	Security of the BSZ Scheme

	Group Signatures in the RSA Setting
	The Ateniese-Camenisch-Joye-Tsudik Scheme
	The ACJT Scheme
	Security of the ACJT Scheme

	The Camenisch-Lysyanskaya Revocation Mechanism for the ACJT Scheme
	Dynamic Accumulators and Group Management
	The Camenisch-Lysyanskaya Accumulator for Prime Numbers
	The ACJT Scheme with Membership Revocation

	The Tsudik-Xu Scheme
	The TX Scheme
	Security of the TX Scheme

	The Camenisch-Groth Scheme
	The Basic CG Scheme
	Security of the Basic CG Scheme
	Dynamic Extensions of the CG Scheme

	The Kiayias-Yung Scheme
	The KY Scheme
	Security of the KY Scheme
	The KY Scheme with Distributed Authorities

	Group Signatures in the Discrete Logarithm Setting
	The Ateniese-de Medeiros Scheme
	The AM Scheme
	Security of the AM Scheme

	The Furukawa-Yonezawa Scheme
	The FY Scheme
	Security of the FY Scheme
	Approach to Distribute Join and Open Procedures

	Group Signatures in the Setting of Bilinear Maps
	The Boneh-Boyen-Shacham Scheme
	The BBS Scheme
	Security of the BBS Scheme
	Extensions of the BBS Scheme

	The Camenisch-Lysyanskaya Scheme
	The CL Scheme
	Security of the CL Scheme

	The Bichsel-Camenisch-Neven-Smart-Warinschi Scheme
	The BCNSW Scheme
	Security of the BCNSW Scheme

	Group Signatures with Verifier-Local Revocation
	Group Signature Schemes with Verifier-Local Revocation
	Algorithms of VLR-Schemes and Their Correctness Property
	Verifier-Local Revocation with Time Intervals (TVLR)
	Adversary Model and Oracles for VLR/TVLR-Schemes
	Anonymity Definitions for VLR/TVLR-Schemes
	Traceability Definitions for VLR/TVLR-Schemes
	Non-Frameability Definitions for VLR/TVLR-Schemes

	The Boneh-Shacham Scheme
	The BS Scheme
	Security of the BS Scheme

	The Nakanishi-Funabiki Scheme
	The NF Scheme
	Security of the NF Scheme

	The Bichsel-Camenisch-Neven-Smart-Warinschi Scheme
	The BCNSW-VLR Scheme
	Security of the BCNSW-VLR Scheme

	Comparison of Group Signature Schemes
	Functionality and Properties
	Overview
	Dynamic Behavior
	Support for Verifiable Opening
	Support for Distributed Authorities
	Support for Membership Revocation

	Security Properties
	Overview
	Anonymity of Signers
	Traceability of Signers
	Non-Frameability of Signers
	Cryptographic Assumptions

	Computational Complexity : Costs and Impact of Different Algorithms
	Computational Costs for Group Managers
	Computational Costs for Group Members and Verifiers
	Costs and Impact of Key Generation
	Costs and Impact of Admission Procedure
	Costs and Impact of Group Signature Generation
	Costs and Impact of Group Signature Verification
	Costs and Impact of Opening Procedure
	Costs and Impact of Judgement Procedure

	Space Complexity : Lengths and Impact of Private and Public Parameters
	Overview
	Length and Impact of Group Manager's Secret Keys
	Length and Impact of Group Public Keys
	Length and Impact of Secret Signing Keys
	Length and Impact of Output Group Signatures
	Length and Impact of Revocation Lists and Public Update Information

	Group Signatures in Practice
	Schemes, Parameters, and Test Environment
	Selected Group Signature Schemes and Their Properties
	Choice of Security Parameters
	General Overview
	Security Parameters for QR(N) Groups
	Security Parameters for Z_P* Groups
	Security Parameters for Bilinear Groups with Type-2 Pairing

	Test Environment, Utilities, and Methodology
	Reference Platforms
	Utilized Libraries
	Test Methodology and Heuristics

	Dominant Operations and Measured Timings
	Computation Costs in QR(N) Groups
	Computation Costs in Z_P* Groups
	Computation Costs in Bilinear Groups with Type-2 Pairings
	Timings of Type-2 Pairing Evaluations in the Literature

	Specification and Performance of the Camenisch-Groth Scheme
	Detailed Specification of the Camenisch-Groth Scheme
	Performance Heuristics for Group Management and Opening
	Performance Heuristics for Signature Generation and Verification
	Scalability of the Verification Procedure

	Space Requirements for the Main Parameters

	Specification and Performance of the Boneh-Shacham Scheme
	Detailed Specification of the Boneh-Shacham Scheme
	Performance Heuristics for Group Management and Opening
	Performance Heuristics for Signature Generation and Verification
	Scalability of the Verification Procedure

	Space Requirements for the Main Parameters

	Specification and Performance of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme
	Detailed Specification of the Bichsel-Camenisch-Neven-Smart-Warinschi Scheme
	Performance Heuristics for Group Management and Verifiable Opening
	Performance Heuristics for Signature Generation and Verification
	Scalability of the Verification Procedure

	Space Requirements for the Main Parameters

	Performance and Scalability Comparison
	Performance and Scalability
	Performance Comparison for Group Management and Opening
	Performance Comparison for Signature Generation and Verification
	Comparison of Verification Scalability with Revocation Checks
	Impact of Scalability on Group Sizes

	Space Requirements for Secret and Public Parameters
	Space Requirements for Secret Parameters
	Space Requirements for Public Parameters

	Concluding Discussion

	Bibliography

