
Practical Security in E-Mail Applications
Franziskus Kiefer1, Alexander Wiesmaier2, Christian Fritz1

1 Technische Universität Darmstadt
Hochschulstraße 10, 64283 Darmstadt, Germany

kiefer@cdc.informatik.tu-darmstadt.de
c_fritz@rbg.informatik.tu-darmstadt.de

2 AGT Group (R&D) GmbH
Hilpertstraße 20a, 64295 Darmstadt, Germany
awiesmaier@agtinternational.com

Abstract—This paper deals with practicability issues of
encrypted e-mails. A quick survey on the status quo indicates
that popular e-mail clients lack substantial practicability
qualities, for example searching in encrypted e-mails. Other
approaches such as De-Mail provide solutions, but offer
transport encryption only. We present and discuss a number of
improvements to the practicability of e-mail encryption. These
enable efficient searching in encrypted e-mails as well as subject
encryption and the use of cryptographic functions in calendar
applications. We present a prototype, called CryptoBird,
providing a proof of concept for the proposed core features.

Keywords—Calendar, CryptoBird, E-Mail, Encryption,
PGP, Practicability, Searching, S/MIME

I. INTRODUCTION

Only few people use encryption to protect their e-mails [11].
While in private communication this might be acceptable, this
is a serious issue in case of governmental or business usage
as plain e-mails are inherently insecure [21].

Nowadays, all major e-mail clients (and servers) support en-
crypted e-mail transport using SSL. Once configured correctly,
this is transparent to the users and protects their e-mails on
their way through the Internet. It provides a reasonable level
of privacy protection and is recommendable for day to day
private e-mail communication. But in other scenarios such as
handling confidential business e-mails or sharing devices with
others, transport security is not sufficient, as the e-mails are
stored in plaintext.

Possible solutions for this problem are using hard disk
encryption or applying e-mail encryption, which both suffer
from low popularity [11], [19]. In the work at hand we focus
on problems related to e-mail encryption.

Reasons for the unpopularity of e-mail encryption might
be unawareness and usability or comfort issues. A lot of
usability research in terms of cognitive walkthroughs and user
studies has been performed on e-mail encryption [29], [23],
particularly on the software Pretty Good Privacy (PGP). We
consider the following practicability issues with encrypted e-
mails as most serious:1

1To see other reasons why users decide whether to use encrypted e-mails
or not we refer to [15].

1) Using asymmetric cryptography to encrypt e-mails re-
quires some kind of public key infrastructure (PKI).
While the use of X.509 [6] and the Secure/Multipurpose
Internet Mail Extensions (S/MIME) [27] is suitable for
companies, universities or other organizations, the cen-
tralized PKI approach is not practicable for private use.
PGP [34] and its infrastructure offer good possibilities,
but its correct application is too complicated for the
regular user [33].

2) Even if the PKI problems are solved, the handling
of encrypted e-mail correspondence comes with some
drawbacks. One of the most serious issues is losing the
ability to conduct full text searches on e-mail folders
when using end to end encryption (which is desired
for security reasons). More disturbances appear when
using the contents of encrypted e-mails outside the e-
mail application, e.g. in calendar applications, which are
usually not capable of decrypting the e-mail content on
the fly. This leads to either unreadable (encrypted) or
insecure (decrypted) calendar entries.

3) Even though the e-mail body is encrypted, the e-mail
header is usually not. This leads to a couple of security
risks, of which the most serious one probably is that
the subject of encrypted e-mails is not encrypted. Even
worse is the fact that the user might not be aware of
this.

A. Contribution and Delimitation

The work at hand focuses on practicability and security
aspects of encrypted e-mail communication and how handling
encrypted e-mails differs from handling plaintext e-mails. We
also show how these differences can be minimized while still
complying to existing standards, resulting in a substantially
better aligned user experience.

This work is not a usability study on (plaintext or encrypted)
e-mail communication. Long-term issues of public key cryp-
tography are also out of the scope of this work.



B. Outline

First, we define practicability criteria and use them for a
survey on common e-mail clients (Sec. II). Then, we propose
and discuss solutions which are in line with existing standard
mechanisms and protocols to solve the identified problems
(Sec. III). After that, we discuss related work and compare
it to our solution (Sec. IV). We demonstrate the feasibility
of our solution presenting a prototypical implementation (Sec.
V). Finally, we give a conclusion and discussion on remaining
open problems (Sec. VI).

II. PRACTICABILITY OF SECURE E-MAILS

In this section, we define and discuss criteria for the
practicability of secure e-mail clients. With these criteria in
mind we analyze existing e-mail clients and identify their
shortcomings before proposing our solution to these problems
in the subsequent section.

A. Practicability Criteria

Our main approach for optimizing secure e-mail handling
is to provide equal treatment of encrypted and plaintext e-
mail communication. We consider the smooth integration of
security features with the existing user interfaces and work
flows as one of the main concerns for practicability. The user
should not have significant additional expenditure when using
encrypted e-mails and user interaction should take place in a
way the user is familiar with from dealing with plaintext e-
mails. This is expressed by the following practicability criteria:

Automatic encryption and decryption (automation): To
achieve a seamless integration into the e-mail client, the user
must be able to write an e-mail in the usual way and toggle
encryption so that the e-mail is sent and stored encrypted.
Encrypted text should be automatically decrypted for viewing
without requiring user interaction.

Efficient key management (key management): The user
should not be obliged to perform demanding key management
tasks. However, in PGP the user has to decide whether a key
is trustworthy or not. But there are some actions that can
be done automatically, for example selecting the correct key
for encrypting or decrypting an e-mail (this overlaps with the
automation criterion). The client might also search for a key on
a (selectable) key-server or offer to import keys received via e-
mail into the keyring. Due to the central approach of S/MIME,
its certificate and key handling is easier. Keys usually can be
downloaded from defined servers (which are assumed to be
trustworthy) or come along with S/MIME signed e-mails from
where they can be imported automatically into the client’s key
management. There is also the topic of management of expired
keys and certificates, which is especially important in case of
long-term archiving of encrypted e-mails. Although long-term
storage is an important issue, it is not the most pressing one
and is not considered in the work at hand.

Feature Range (feature range): The features offered for
encrypted e-mails should not differ from the ones for plaintext
e-mails (for example the possibility to search for keywords). In
addition to the e-mail functionality, there are several integrated

functionalities, such as converting e-mails into calendar entries
that work fine with plaintext e-mail content. They should be
usable with encrypted content, too.

Seamless integration (integration): Security related func-
tionality should be provided via the existing interfaces, such
as tool bars, context menus or filters. If this is not possible,
the interfaces should be extended in the style and spirit of
existing features and user interfaces. Another important topic
is that the security functionality behaves as expected (which
is currently not always the case, cf. Sec. III).

Support of common standards (standard support): There
are different standards which have to be supported. Regarding
e-mail security, these standards are S/MIME [27], PGP/MIME
[5] and PGP/INLINE [5] supporting e-mail encryption and
signing.

B. Client Analysis
With these criteria in mind we evaluate common e-mail

clients regarding their practicability when using encryption
features. Our distinction between “encrypted content” and
“cleartext” refers to e-mails as well as calendar entries. Table I
summarizes the survey. The table is to be read in the following
way: ’yes’ means that the feature is included in the e-mail
client. ’+’ implies that the functionality in question can be
added by installing add-ons or extra programs. ’no’ stands
for missing functionality. If a feature is only available for a
certain standard, this is indicated by the name of the supporting
standard, e.g. ’S/MIME’. The detailed results are described in
the following paragraphs.

Client Auto- Key Feat. Inte- Std.
mation Mgnt. Range gration Sup.

Apple Mail yes/+ yes no no yes
Evolution yes + no yes yes
Gmail +S/MIME + no no +
MS Outlook no + no S/MIME +
Thunderbird + + no yes +

TABLE I
FEATURE COMPARISON OF E-MAIL CLIENTS

Apple Mail [1] (aka Mail.app) is the standard e-mail
client for Mac OS X (and iOS devices). It supports S/MIME
encryption and signing. With the help of the GPGMail [18]
plug-in, it is possible to perform PGP encryption and signing
(using the desktop application). E-mails are decrypted when
the decryption button is pressed. GPGMail can find keys of
recipients automatically in the keyring and is even able to
download missing keys from a given server. It is not possible
to search in encrypted e-mails. All in all only the criteria key
management and standard support are sufficiently fulfilled.

Evolution [25] is an open-source e-mail client for Linux
and is shipped with GNOME. It is able to encrypt, decrypt,
sign and verify PGP- and S/MIME e-mails automatically.
It uses a keyring provided by programs such as the free PGP
implementation GnuPG. There is no possibility to directly add
keys received by e-mail. Searching for text in encrypted e-
mails is not supported. Evolution complies with the criteria



automation, standard support and integration. The key man-
agement criterion is only partially fulfilled.

Gmail [17] is a very popular example for web-mail inter-
faces. Additional software like GnuPG enables PGP usage
with Gmail, but requires additional manual actions to be
performed by the user. Recurity[28] recently published a first
prototype2 of a PGP plugin for the Chrome[16] browser and
Gmail service. Another add-on that works with various web
browsers is Penango [26]. It allows to encrypt and sign e-mails
with Gmail using the S/MIME standard. The Penango Firefox
add-on takes advantage of the build-in certificate management
of Firefox. To our knowledge it is not possible to search in
encrypted e-mails. None of the practicability criteria defined
above is adequately fulfilled.

Microsoft Outlook [24] can handle S/MIME-encrypted e-
mails but is not able to process PGP e-mails on its own. There
are some approaches to add PGP compatibility, for example a
project called gpg4win [20], which is a collection of different
tools including a PGP plug-in for Microsoft Office 2003/2007.
Currently, the plug-in does not work with Microsoft Outlook
2010.

The commercial software PGP Desktop [30] is a stand-alone
solution that handles PGP-encrypted texts. It can be embedded
(as an Add-In) into Outlook 2010 and other e-mail clients such
as Thunderbird. The decryption requires some manual action:
the encrypted e-mail has to be moved to the PGP Viewer
window where it gets decrypted. The decrypted e-mail can
be copied to the Outlook 2010 inbox - so the e-mails can
be searched afterwards, but they are not stored encrypted any
longer which might be unwanted due to confidentiality risks. In
summary none of the practicability criteria is met completely.

Mozilla Thunderbird is a multi-platform e-mail client
which can be easily extended by add-ons. It is able to handle
S/MIME encrypted e-mails. By using the add-on Enigmail
[31] and GnuPG [13] PGP-encrypted e-mails are supported
and processed automatically. Enigmail assists the user by
offering an automatic import of keys sent by e-mail and also
picks the correct keys for the recipients from the keyring.
Thunderbird is lacking a possibility to search in encrypted
e-mails. As mentioned above, PGP Desktop can be used with
Thunderbird, but regarding our criteria it is not as powerful as
the Enigmail add-on. In summary, Thunderbird and its add-ons
support automation, key management, integration and standard
support. The criterion feature range is only partly fulfilled.

C. Practicability Conclusion

None of the introduced e-mail clients meets all our practica-
bility criteria. In particular, no e-mail client is compliant with
the feature range criterion, not even with third party plug-
ins. For most clients encryption features are only available
after installing extra software or add-ons. The e-mail clients
that provide calendar functionality are not prepared to handle
encrypted calendar content.

2http://gpg4browsers.recurity.com

III. ENHANCING THE PRACTICABILITY OF SECURE
E-MAILS

In the following we consider an e-mail client with calendar
functionality that handles S/MIME encrypted e-mails as well
as PGP/INLINE and PGP/MIME encrypted e-mails.

We have seen that currently no e-mail client exists which
provides equal treatment of encrypted and plaintext e-mails,
in particular meeting all our criteria. In this section we
propose and discuss concrete improvements to overcome the
shortcomings discussed in Section II. As all of the investigated
clients miss this quality, we focus on the equal treatment of
plaintext and encrypted e-mails. Furthermore, we deal with
some additional improvements that enhance the security of
encrypted e-mails. We consider the ability to search in e-mails
as one of the most critical shortcomings when it comes to the
handling of encrypted e-mails. As shown in [32], searching in
e-mails is one the most efficient ways to organize them.

In the following we investigate possibilities to reach a
seamless integration of encrypted e-mails into existing clients.
Additionally, we provide some details on our prototypical
implementation of the proposed improvements. We imple-
mented an open source prototype as Thunderbird add-on called
CryptoBird as proof of concept3 (cf. Section V).

In addition to the previously defined criteria we consider
the following:

In order to provide reasonable efficiency when working
with big amounts of data, some kind of indexing or caching
might be necessary. In this case, it is important to work
with an encrypted index or cache to avoid compromising the
confidentiality. An encrypted index or cache might require
an additional password, which should be integrated into the
password manager of the e-mail client.

Current implementations of e-mail encryption show a
strange and risky behavior: the encryption applies to the body
only and does not include the header, especially not the
subject line. To meet the user’s expectation when encrypting a
message, some kind of header encryption has to be applied to
encrypted e-mails. This way the user is not lulled into a false
feeling of security when encrypting e-mails.

A. Searching in Encrypted Content

As mentioned before, we consider conducting full text
searches in the bodies of encrypted e-mails as one of the most
pressing matters. This pays attention to the paradigm shift
from ordering to searching big amounts of data, especially
when dealing with e-mails [32]. While this is possible in
some e-mail clients for the currently displayed e-mail, it is
currently impossible to conduct reasonable full text searches
over multiple encrypted e-mails in folders or whole mailboxes.

A main problem which has to be solved here is the effi-
ciency. A search in encrypted e-mails would take a long time
if each e-mail has to be decrypted on the fly while searching.
This lack of efficiency has mainly two reasons. First, the
straight forward full text search in stored e-mail bodies is slow

3The prototype can be found at https://code.google.com/p/cryptobird/.



anyway. Second, the cryptographic operations need additional
time.

We solve this in CryptoBird by indexing all decrypted e-
mails and storing them in a secure database. This database of-
fers encrypted data storage while preserving efficient querying
features. This procedure can also be applied for other sensitive
content like calendar entries. Section V gives more technical
details on this topic.

This solution especially supports the integration and feature
range criteria while preserving efficiency.

B. Calendar Integration

Another issue is the conversion of encrypted e-mails into
calendar entries (events or tasks) using the integrated calendar
of the e-mail client. During the conversion a new calendar
entry is created from an e-mail and inserted into a selectable
calendar (local or remote). The new calendar entry is pre-
filled with the body of the e-mail and is displayed for editing.
The e-mail’s subject is used as title of the calendar entry.
Furthermore, the conversion between tasks and events as well
as all other calendar functions should work whether the content
is encrypted or not.

It should be possible (and the default behavior) to keep
the content encrypted for confidentiality reasons (especially
when using third party online calendars). Then, the plaintext
content should be displayed in cleartext to the user and all
invitees in an automated manner. This can be achieved with
the same techniques as with e-mails sent to multiple recipients,
i.e. encrypting the session key with the public key of each
participant. It should also be possible to easily generate a
calendar entry containing the plaintext body of an encrypted
e-mail. This is useful when the user wants to generate a public
calendar entry or not all invitees are able to view encrypted
calendar entries. Then, the user should be able to edit the
calendar entry before saving it to have the possibility to delete
confidential information. The other way round — converting
a calendar entry into an e-mail — also has to be supported.
In this case the same applies analogously. It should also be
possible to search in encrypted calendar entries (cf. previous
subsection).

C. Encryption Toggling

Another useful feature is toggling the encryption status
of existing e-mails or calendar entries. This means (bulk)
encryption or decryption of stored e-mails or calendar entries.
This should be possible for individual or multiple selected
items or for entire e-mail folders or calendars. We discuss the
usefulness of both directions:

Encrypting plaintext e-mails / calendar entries: It is
obvious that encrypting cleartext that has been submitted
via an open network or has been stored in an untrusted
environment does not annihilate the disclosures it may already
have suffered. The point in encrypting such data is to decrease
future risk of disclosure. An everyday example where this is
useful is loosing the device the e-mail client is stored on, for
example a laptop or a memory stick. By encrypting all e-mails

(although received in cleartext) a possible thief or finder of
the device is prevented from reading the e-mails. This could
also be achieved by encrypting the entire device, but a recent
study [19] shows that only very few users actually use hard
disk encryption. An interesting feature in this scenario is the
automatic encryption of all stored e-mails or calendar entries
by the e-mail client. This would for example protect all server
side data of Web based e-mail clients in case the user’s account
is hacked.

Sometimes cleartext e-mails or calendar entries never leave
the trusted environment. For example, by sending intra-
organization e-mails from computers within an organization
The same applies for calendar entries created and stored
in local calendars. When leaving the trusted environment,
e.g. when the organization is about to outsource its e-mail
and calendar services into the Cloud, it seems appropriate
to encrypt these e-mails and calendar entries. This is also
applicable to private users.

As we see, encrypting plaintext e-mails or calendar entries
has useful applications and should be supported by the e-mail
clients.

Decrypting ciphertext e-mails / calendar entries: At
first glance, the permanent decryption of ciphertext seems
unreasonable, in particular if the information is still to be
protected. An applicable example is a local storage which
is considered secure (for example if hard disk encryption is
applied). By decrypting e-mails / calendar entries all cleartext
based features of the e-mail client or additional software (such
as spam or malware scanners) can be used, while the transport
is protected by encryption4. If this is to be considered secure, it
has to be made sure that the e-mail server / calendar server and
the connection to the server is also secure, as local decryption
might lead to decryption on the server (e.g. when using IMAP
folders). In this scenario, automatic decryption of all stored e-
mails by the e-mail client might be applied. It is important that
the e-mail is per default encrypted again when it is forwarded
or the user replies to it.

Another scenario where permanently decrypted e-mails or
calendar entries might be appropriate is when a user leaves the
company and has to deliver the information to his successor
or superior. He can pass the information on without revealing
his private key. A similar situation occurs when the user is
forced by court order to reveal his e-mail communications or
business appointments.

As we see, permanently decrypting ciphertext e-mails or
calendar entries has reasonable scenarios. A further (practi-
cability related) scenario is restoring accidentally encrypted
plaintext e-mails.

D. Header Encryption

One major drawback that might lead to serious information
disclosure is the following characteristic of e-mail encryption
standards: Even if the body is encrypted, all header infor-
mation including the subject is sent in plaintext. If a user

4This is exactly what happens in the upcoming De-Mail solution (cf. Section
IV).



does not consider this, he might unwillingly disclose sensitive
information. We discuss two different mechanisms to realize
header encryption.

Enveloping: [27, 3.1] proposes a way to secure headers,
especially the subject, of e-mails. The proposal is from the
S/MIME standard but is also applicable to PGP/INLINE and
PGP/MIME encrypted e-mails. In order to protect the header
fields, the sending client wraps a full MIME message in a
message/rfc822 [7] wrapper in order to apply security services
to the header fields. This is possible since the entire e-mail
(header and body) consists of printable characters and thus,
can be handled as a message body itself. As discussed in [22],
this approach comes with some drawbacks like duplicated
header fields. According to our knowledge, no commonly used
e-mail client implements this feature.

Field Encoding: The second possibility to secure header
fields is to encrypt them separately one by one. The subject
header field, for example, can be encrypted using standard
S/MIME or PGP mechanisms. As both produce Base64 en-
coded ciphertexts, these can be stored in the header field
instead of the original content. Before sending an e-mail
the user can decide to encrypt for example the subject. The
decisions may also be linked, so that the subject is encrypted
as soon as the e-mail is encrypted, using the same encryption
mechanism. The encryption and decryption has to be per-
formed transparently. Obviously, the encrypted subject has to
be handled the same way as encrypted bodies (cf. Subsection
III-A). Due to the lack of standardization both sender and
receiver have to make sure to be interoperable. Otherwise,
the receivers e-mail client may display the Base64 encoded
ciphertext as subject.

E. Future of Encrypted E-Mails

Contemporary e-mail clients support encryption algorithms
that meet the security demands of the near future. But new
algorithms – e.g. post-quantum algorithms – are developed.
For long-term security it should be possible to react to the
progress in cryptographic research by including new algo-
rithms in a flexible way. We created a proof of concept called
ThunderCrypt [2] to provide the possibility to use cutting edge
cryptographic algorithms in e-mail communication, but we do
not cover this topic in the work at hand.

IV. RELATED WORK AND COMPARISON

To our knowledge there is no previous work that deals with
equal treatment of encrypted and plaintext e-mail communica-
tion, but there are some other approaches that offer improved
handling of encrypted e-mails. We analyze the approaches
which try to solve some of the identified problems. While our
approach enhances the practicability and security and complies
with the given standards and protocols as far as possible, other
approaches deviate from existing standards.

A. Client Site Approaches

One possibility to overcome the described shortcomings of
deployed encryption mechanisms is to use enhanced crypto-

graphic schemes. We present two client site approaches that
cover only certain aspects of our main approach.

Opportunistic Encryption: A very convenient way of
avoiding practicability problems in e-mail encryption is to use
so-called Streams with opportunistic encryption as proposed
in [14]. Using opportunistic encryption, the e-mail client tries
to find a key matching the receivers e-mail address. If the e-
mail client is not able to find any matching key it falls back
to the unencrypted mode. This is completely transparent for
the user. The proposed Streams additionally create a sanitized
e-mail header and encapsulate the original one in the e-mail
to protect the subject.

From the practicability point of view, opportunistic encryp-
tion is very good in the sense that the encryption process does
not interfere with the functionality. As it spares the user to
interact with the encryption at all, the user does not need any
knowledge of the underlying cryptography which is good for
practicability. But regarding the security, opportunistic encryp-
tion is disastrous. The user does not have control over the
actual security measures applied to his message. Furthermore,
even if transferred encrypted, e-mails are stored in plaintext
on the receiver’s device, so that they are locally vulnerable.
Thus, opportunistic encryption meets most of our criteria but
lacks the standard support and also has some privacy issues.

Encryption with Keyword Search: Another proposal that
covers only one aspect of our approach is the possibility to
search for predefined keywords (tags) in encrypted e-mails [4],
[3]. The focus is to hide all information from a third party
(for example the e-mail server), which is nonetheless able to
fulfill requests based on the tags. The approach does not allow
to perform full text searches and is not standardized.

B. Server Site Approaches

Besides the possibilities to use enhanced cryptographic
mechanisms in e-mail clients (on user site), there are also
techniques where the security is achieved by server side
measures (on provider site). We present De-Mail [10] as an
example. It is an e-mail project promoted by the German
federal government to make e-mail transfer secure and legally
binding. Assuming that Alice wants to send an e-mail to
Bob using De-Mail, she logs into her De-Mail account to
send the e-mail without performing any additional steps. The
connection between Alice and her e-mail provider is secured
by standard mechanisms (e.g. mutual authenticated SSL/TLS
[8]). The e-mail provider encrypts the e-mail and sends it
(using a secure channel) to Bob’s e-mail provider. Bob’s e-
mail provider decrypts the message and checks its integrity
before storing it in Bob’s inbox. When Bob now checks his
e-mails (using a secure connection), he sees Alice’s e-mail
and can be sure that Alice wrote it and nobody else has been
able to read or modify its content (if he trusts the De-Mail
provider).

A major concern regarding such techniques is the privacy
of the data, since the involved e-mail providers are able to
read all messages in plaintext. Thus, the user has to put
unconditional trust into all involved De-Mail providers. This



trust is to be established by a certification process supervised
by the German Federal Office for Information Security (Bun-
desamt für Sicherheit in der Informationstechnik, BSI) [12],
[9]. Furthermore, only the transport is secured. The e-mail
is not secured locally and on the servers of the provider.
Registration is possible since July 2010, the service is available
for corporate customers since march 2012 and some providers
state to start the service for private customers in 2012. Apart
from a small pilot scheme in 2010, there are no practical
experiences or studies on the ease of use yet.

C. Related Work & Conclusion

There is no implementation of opportunistic encryption
available for current mainstream e-mail clients. Even if it
was available, both sender and receiver had to use the same
plugin as opportunistic encryption is not standardized. The
same applies for encryption with keyword search.

Despite the fact that De-Mail service providers most likely
will charge the users for sending e-mails, it is not possible to
send or receive a De-Mail with a regular e-mail account since
the e-mail provider is not able to process the De-Mail.

Therefore, none of these approaches are satisfying. They do
not solve the practicability problems depicted in Section II or
miss to use standardized protocols.

V. CRYPTOBIRD

As a proof of concept we implemented features described
in Section III as a Thunderbird add-on called CryptoBird. In
the following we describe the core features and how they
implement the mechanisms described in Section III to make
a step towards equal treatment of encrypted and plaintext e-
mails. Thunderbird with the Enigmail and Lightning add-ons
offers the basic functionality to handle plaintext and encrypted
e-mails as well as calendar entries, which we extended to fulfill
the following criteria:

A. Searching in encrypted e-mails

One of CryptoBird’s core features is to allow the user to
conduct full text searches in the bodies of encrypted e-mails
over entire folders or mail boxes as introduced in Section
III-A. Thereby, it supports all common standard mechanisms,
namely S/MIME, PGP/INLINE and PGP/MIME.

To realize the search in encrypted e-mails the secure
database software Derby5 is used. The software allows pass-
word based encrypted storage of all database contents while
still providing the common database functionalities, especially
efficient data querying. Upon arrival of a new encrypted email,
it is indexed and stored in the database. CryptoBird traces e-
mails throughout their life cycle. Moving e-mails from one
folder to another one or moving entire folders, cause the
database to be updated so that the search results remain valid.
Deleting an e-mail will also delete the according database
entry. With CryptoBird, not only plaintext e-mails but also
encrypted e-mails are considered when searching for a key-
word using Thunderbird’s standard search feature. Therefore

5http://db.apache.org/derby/

not only the internal Thunderbird database is queried but also
our password protected database.

B. Encrypted Calendar Entries

Using the e-mail client as personal information manager
(PIM), a calendar feature is integrated in the e-mail client
(in the case of Thunderbird Lightning undertakes this task).
Converting an e-mail into an event or task works fine with
plaintext e-mails. But encrypted e-mails are only decrypted
on the fly to display. Converting an encrpyted e-mail to an
event or task, Lightning inserts the ciphertext as description
in the case of PGP/INLINE encrypted e-mails. S/MIME
and PGP/MIME encrypted e-mails lead to empty events and
tasks. CryptoBird offers the possibility to convert at least
PGP/INLINE encrypted e-mails to calendar events (cf. Sub-
section III-B) for now. The event or task can be stored in
plaintext or encrypted. Encrypted events and tasks lead to the
same problem as with encrypted e-mails. To overcome this,
CryptoBird decrypts events and tasks on the fly, similar to
the decryption of e-mails, and stores them in the database for
searching.

C. Header Encryption

CryptoBird does not only enhance the feature range for
encrypted e-mails, but also brings additional privacy features.
To solve the privacy problems of plaintext e-mail subjects in
encrypted e-mails, CryptoBird allows to encrypt the subject
field using PGP as explained in Subsection III-D using the
encoding technique. To ensure equal treatment, the decrypted
subjects are also stored in the encrypted database to consider
them in the keyword search.

D. CryptoBird Conclusion

Having the criteria from Section II in mind, CryptoBird
proofs the possibility of fulfilling all five criteria. As Cryp-
toBird complies to the established standards, the regular e-
mail encryption features stay interoperable with standard e-
mail clients without CryptoBird. However, due to the lack of
standardization in the case of header encryption and encrypted
calendar entries, all participating parties have to install the
CryptoBird extension to read encrypted subjects and calendar
entries.

VI. CONCLUSION AND OPEN ISSUES

We saw that the practicability of security in e-mail applica-
tions is an important yet not sufficiently addressed issue. The
different mainstream e-mail clients provide different degrees
of practicability in this respect, but none of them provides a
solution comparable to the comfort of using plaintext e-mails.
We discussed the four in our eyes most pressing practicability
issues namely searching in encrypted content, calendar inte-
gration, toggling the encryption, and header encryption. We
showed how it is possible to solve them while sticking to the
most common standards, thereby guaranteeing interoperability.
As a proof of concept we presented CryptoBird, a prototypical
Thunderbird add-on implementation.



An open issue, regarding the subject and calendar en-
cryption, is the lack of standardization. An adaption of the
according RFCs may be reasonable here. Further projects
should increase the practicability of CryptoBird by implement-
ing the remaining not yet implemented features described in
Section III. An indexed database may also be desirable for
efficiency reasons. An integration of the PGP related features
of CryptoBird into Enigmail seems be reasonable. It is also
thinkable to integrate CryptoBird’s S/MIME enhancements
into Enigmail. In order to evaluate the usability enhancements
CryptoBird provides, conducting a user study would be the
next step.

REFERENCES

[1] Apple Inc. Apple mail. http://www.apple.com/macosx/whats-new/mail.
html, 2012. Accessed: 18/02/2012.

[2] S. Arzt. Design and implementation of a cryptographic plugin for e-mail
clients, Nov 2009. Whitepaper.

[3] J. Baek, R. Safiavi-Naini, and W. Susilo. Public Key Encryption with
keyword Search Revisited. In International conference on Computa-
tional Science and Its Applications, pages 1249–1259. Springer, 2008.

[4] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public Key
Encryption with keyword Search. In Advances in Cryptology Eurocrypt,
volume 3027, pages 506–522. Springer, 2004.

[5] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP
Message Format. RFC 4880 (Proposed Standard), November 2007.
Updated by RFC 5581.

[6] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, and R. Nicholas. Internet
X.509 Public Key Infrastructure: Certification Path Building. RFC 4158
(Informational), Sept. 2005.

[7] D. Crocker. Standard for the format of ARPA Internet Text Messages.
RFC 822 (Standard), Aug. 1982. Obsoleted by RFC 2822, updated by
RFCs 1123, 2156, 1327, 1138, 1148.

[8] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), Aug. 2008. Updated by
RFCs 5746, 5878, 6176.

[9] Federal Office for Information Security (Bundesamt für Sicherheit
in der Informationstechnik). Akkreditierung von de-mail-
diensteanbietern, 2011. https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Egovernment/De Mail/De-Mail-Akkreditierung-
Prozessuebersicht.pdf? blob=publicationFile.

[10] Federal Office for Information Security (Bundesamt für Sicherheit in der
Informationstechnik). BSI - Technische Richtlinie DE-Mail. Technical
Directive (BSI-TR-01201), Version 1.00, 2011. https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/
De Mail/TR De Mail pdf.pdf? blob=publicationFile.

[11] Federal Office for Information Security (Bundesamt für Sicherheit in der
Informationstechnik). De-mail - eine infrastruktur für sichere kommu-
nikation. https://www.bsi.bund.de/DE/Themen/EGovernment/DeMail/
DeMail node.html, 2012. Accessed: 18/02/2012.

[12] F. O. for Information Security (Bundesamt für Sicherheit
in der Informationstechnik). Verfahrensbeschreibung zur
akkreditierung von de-mail-diensteanbietern, 2011. https:
//www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Egovernment/
De Mail/Verfahrensbeschreibung-zur-Akkreditierung-De-Mail-
Dienstanbieter.pdf? blob=publicationFile.

[13] Free Software Foundation Inc. The GNU Privacy Guard. http://www.
gnupg.org/, 2012. Accessed: 25/02/2012.

[14] S. Garfinkel. Enabling email confidentiality through the use of oppor-
tunistic encryption. In Proceedings of the 2003 annual national confer-
ence on Digital government research, pages 1–4. Digital Government
Society of North America, 2003.

[15] S. Gaw, E. W. Felten, and F.-K. Patricia. Secrecy, flagging, and paranoia:
adoption criteria in encrypted email. In Proceedings of the SIGCHI
conference on human factors in computing systems, pages 591–600.
ACM, 2006.

[16] Google. Chrome. http://www.google.com/chrome, 2012. Accessed:
18/02/2012.

[17] Google Inc. Gmail. http://gmail.google.com/mail/, 2012. Accessed:
14/02/2012.

[18] GPGMail. Gpgmail. http://www.gpgtools.org/gpgmail/index.html, 2012.
Accessed: 14/02/2012.

[19] O. Inc. ISecurity Industry Market Share Analysis, Sept. 2011.
[20] Intevation GmbH. Gpg4win - a secure solution... http://www.gpg4win.

org/index.html, 2012. Accessed: 11/02/2012.
[21] J. Klensin. Simple Mail Transfer Protocol. RFC 5321 (Draft Standard),

Oct. 2008.
[22] L. Liao and J. Schwenk. Header protection for s/mime

draft-liao-smimeheaderprotect-05. http://tools.ietf.org/html/draft-liao-
smimeheaderprotect-05, 2009. Accessed: 18/02/2012.

[23] D. G. T. Markotten. Benutzbare Sicherheit in informationstechnischen
Systemen, chapter 4. Rhombos Verlag, Berlin, 2004.

[24] Microsoft Corporation. Mircosoft outlook 2010. http://office.microsoft.
com/outlook/, 2012. Accessed: 18/02/2012.

[25] Novell Inc. Evolution. http://projects.gnome.org/evolution/, 2012.
Accessed: 18/02/2012.

[26] Penango Inc. Penango. http://www.penango.com/index.html, 2012.
Accessed: 18/02/2012.

[27] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Ex-
tensions (S/MIME) Version 3.2 Message Specification. RFC 5751
(Proposed Standard), Jan. 2010.

[28] recurity.com. Recurity. http://www.recurity.com/, 2012. Accessed:
18/02/2012.

[29] S. Sheng, L. Broderick, C. A. Koranda, and J. J. Hyland. Why
Johnny Still Can’t Encrypt: Evaluating the Usability of Email Encryption
Software. In Symposium On Usable Privacy and Security, 2006.

[30] Symantec Corporation. Pgp desktop email - email encryption software
for desktop and laptop computers. http://www.symantec.com/business/
desktop-email, 2012. Accessed: 02/02/2012.

[31] The Enigmail Project & mozdev.org. Enigmail - openpgp email
security for mozilla applications type. http://enigmail.mozdev.org, 2012.
Accessed: 26/01/2012.

[32] S. Whittaker, T. Matthews, J. Cerruti, H. Badenes, and J. Tang. Am
I wasting my time organizing email?: a study of email refinding.
In Proceedings of the 2011 annual conference on Human factors in
computing systems, pages 3449–3458. ACM, 2011.

[33] A. Whitten and J. Tygar. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0. In 8th USENIX Security Symposium, 1999.

[34] Zimmermann, Philip R. The official PGP user’s guide. MIT Press,
Cambridge, MA, USA, 1995.


