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Abstract. Electronic signatures replace handwritten signatures in elec-
tronic processes. In this context, non-repudiation is one of the most de-
sired properties – yet in practice it cannot be provided by the signature
schemes themselves. Therefore, additional mechanisms in the underlying
public key infrastructure are required. In this work, we present a formal
treatment of that issue. We extend the formal model for public key infras-
tructures by Maurer introducing transitions to make it dynamic. We use
the extended model to evaluate the relationship between non-repudiation
and revocation and prove that backdated revocation always destroys the
non-repudiation property. We prove that forward secure signatures can
be used to maintain non-repudiation, rendering the costly use of time-
stamping – as required by all existing solutions – superfluous. We also
show how to realize this in practice, introducing a new index reporting
protocol. Moreover, we show how this protocol can be used to support
detection of malicious key usage, thereby improving the overall security
of electronic signing. Besides, the index reporting protocol allows for a
convenient realization of pay per use models for certificate pricing.

1 Introduction

Over the past few years, the importance of eBusiness and eGovernment has been
steadily growing. More and more processes are handled online without physical
interaction. To guarantee for authenticity and non-repudiation in such processes,
electronic signatures are used. Moreover, many countries allow to replace hand-
written signatures by electronic signatures and consider these as legally binding
[17]. This allows to transfer many processes to the digital world that formerly
required a media disruption, e.g. in many countries applying for a bank account.
However, there is a fundamental difference between handwritten and electronic
signatures. While handwritten signatures are naturally bound to a single person,
the binding between electronic signatures and a person is artificial and thus frag-
ile. The private key, required to generate signatures, can be applied by anyone
who knows it or has access to it, without any possibility to distinguish which
signature has been generated by whom. Thus, electronic signatures can only
provide authenticity and non-repudiation as long as the private signature key is
only applicable by a single person. While for authentication exclusive applicabil-
ity during signature generation is only checked once, for use-cases that require



non-repudiation it must be provable as long as the signature is of any interest. In
many cases, non-repudiation must be preserved for ten years and more by law.
So far, this problem was never approached using a formal analysis. We make
up for this omission. Namely, we present a formal treatment of the problem of
preserving non-repudiation in practice. Additionally, we show how this problem
can be solved more efficiently than today.

The binding between a specific key and a person is realized by a (hierarchical)
Public Key Infrastructure (PKI). In a PKI the binding between the signer’s
identity (e.g. a name) and his public key is established using certificates, issued
(i.e. signed) by a Certification Authority (CA). This CA is also responsible for
a revocation of the certificate in case of a key compromise. This is necessary, as
there does not exist any usable and perfect protection of the secret key. However,
it is necessary to protect the secret key in a way that a key compromise can be
detected and that the key is protected at least until it is revoked. For this reason
secure storage devices like smart cards should be used. In case of legally binding
signatures a secure storage device is even required by law in most countries. But
even secure storage devices can not guarantee perfect security. The device can
be stolen or get lost. While these devices can be assumed to protect the secret
key for short time span they should not be assumed to protect the key for a
long time period, i.e. years, if an adversary has direct access. The progress in
cryptanalysis, especially in the field of side-channel attacks, periodically proves
such assumptions wrong. Anyhow, as revocation exists, the secure storage device
only has to protect the secret key until the key compromise is detected and the
key is revoked.

To summarize, the binding between key and a person is only temporary,
terminated either by expiry of the certificate or revocation. And this is where
the non-repudiation property, which is guaranteed by the electronic signature
in theory fails in reality if there are no additional measures. As compromise is
possible, a key owner can simply claim that his key was compromised, ascrib-
ing the generation of signatures to an adversary and thereby repudiating valid
signatures.

To prevent such a repudiation attack, a chronological order of events is re-
quired and must be considered during signature validation. A signature should
then be verified as valid, if it was generated before a key compromise. In practice,
the actual result of a signature validation does not only depend on the verifica-
tion result of the candidate signature but also on the validation model. Validation
models for hierarchical PKIs define, which certificates in the certificate chain of
the candidate signature have to be valid at which time for a successful valida-
tion. The current Internet standard for certificate validation, namely the shell
model [9], cannot be used for legally binding signatures, as it does not take the
order of events into account [3,7] and hence a signature becomes invalid if any
certificate in the chain is expired or revoked. The chain model (cf. Section 2.1)
in contrast is applicable as it takes into account the chronological order of events
and allows to verify a signature as valid, if all signatures in the certificate chain
and on the document were generated before the corresponding certificate was



revoked or expired. The crux of implementing the Chain model is to establish
this provable chronological order of events.

Common signature schemes do not provide inherent properties to determine
and prove the chronological order of generated signatures. Today’s solution is
to apply an indirection and use time-stamps generated by trusted third parties
– an inefficient approach with plenty of disadvantages (see Appendix A). We
propose a new solution using forward secure signature schemes (FSS) which
have chronological ordering as an inherent property. But some challenges remain,
namely how to establish a before and after relation between signature generation
and revocation in the face of dishonest end-entities aiming at repudiating their
own signatures. A similar approach was presented in [18], yet, problems like
compromise detection and key update scheduling remain open. Furthermore,
non-repudiation is established at the end of a time period and not directly when
a verifier obtains a signature.

Contribution. Based on Maurer’s formal model for PKI [15] and its extensions
[14,5], we establish a generalized and dynamic PKI model, in which a before and
after relationship between two events can be described. This allows us to describe
non-repudiation, which was not possible in previous models. We show, that non-
repudiation strictly requires the prevention of backdated revocation, proving
equivalence of the two. We evaluate the problems with backdated revocation and
discuss different methods to prevent it. We evaluate our model on the approach
of trusted time-stamps in Appendix A.

We present a new solution to establish a provable chronological order of
events based on FSS, called Sign & Report, and prove that it can be used to
achieve non-repudiation. Besides that we show how the proposed solution allows
for a complementary security mechanism to detect key compromises. We also
present a practical realization of the Sign & Report approach. Its core is an index
reporting protocol, which allows monitoring of key usage by a TTP. Compared
to the current approach of trusted time-stamps, with our approach we save one
online step, do not need an independent infrastructure and save the signature
generation and validation of the time-stamps. Furthermore, this allows for pay
per use signatures besides the targeted core functionalities.

2 Security Model

In this section we propose a new extension to the formal security model intro-
duced by Maurer in [15]. This extension allows to model revocation and formally
define the notion of non-repudiation by using transitions between states. In this
work we are only concerned with malicious end-entities. For the sake of simplic-
ity, we thus do not consider attacks against CAs. One might for example use [7]
to handle these. Hence we assume CAs to be trustworthy and non compromised.

2.1 Formal PKI Model

In [15] Maurer introduced a formal security model for public key infrastructures
later extended by Marchesini et al. [14] and Bicakci et al. [5]. We build our



model upon [14] as they introduce a smooth notion of how to handle time. We
generalize their model in the sense that we do not depend on real time, but allow
any indexing that admits a chronological ordering. This still includes the usage of
real time information for indexing. While all former models are static, meaning
they model one snapshot of a PKI, we introduce transitions between snapshots
of the PKI, making the model dynamic. We further extend the model of [14],
adding an explicit definition of revocation handling and end-entity signatures.
This allows us to discuss non-repudiation using our model.

For simplicity, we only model relations starting from Sub-CAs that sign end-
entity certificates. Thus, we assume trust in these Sub-CAs without considering
how this trust is established. As we are only concerned with malicious end-
entities, this fulfills our needs. It is straight forward to extend our model and
proofs to the case of a hierarchical PKI. We also drop those parts of former
models used to model a web of trust.

We model a PKI as View of a potential user at a specific time t. A user’s
View is a set of statements. We define six different statements. Trust expresses the
trust in a (Sub-)CA, obtained according to the higher hierarchy or by explicitly
trusting this CA. Cert says that the user has seen an end-entity certificate of the
respective person. If a user has seen a certificate once, it remains in her view.
The same holds for Signature and Revoc, which model that a user has seen a
document signature or revocation information, respectively. Furthermore, there
are two different Valid statements, which model that a user is convinced of the
validity of an end-entity’s certificate Cα,β,γ,ε or document signature Sζ,η,δ. These
two Valid statements can be inferred from other statements, using inference rules
defined later. As we allow transitions between Views, every View is indexed with
a time t ∈ N. Note that indices used inside statements might be independent
from the indices of the views. We write Viewt for the View at time t and View if
no specific t is needed.

Definition 1 (Statements). Let CA denote a (Sub-)CA, A an end-entity’s
identity, D a document and I a (time) interval. A Viewt = {stmt1, . . . , stmtn}
at point in time t consists of n ∈ N statements stmti. There exist the following
six statements:

Trust(CA, I) denotes the belief that, during the interval I, CA is trustworthy
for issuing certificates, i.e. models the axiomatic trust in (Sub-) CAs.

Cert(CA,A, i, I) denotes the fact that CA has issued a certificate for A at index
i, which, during I, binds A’s public key to the certificate.

Signature(A, D, i) denotes the fact that A has signed a document D at index i.

Revoc(CA, Cα,β,γ,ε, i) denotes the fact that CA has revoked the certificate Cα,β,γ,ε,
represented by statement Cert(α, β, γ, ε), at index i.

Valid(Cα,β,γ,ε, i) denotes the belief that certificate Cα,β,γ,ε is valid at evaluation
index i.

Valid(Sζ,η,δ) denotes the belief that signature Sζ,η,δ, represented by statement
Signature(ζ, η, δ), is valid.



A statement is valid if and only if it is in the View or can be derived from it
using one of the inference rules defined below.

Fig. 1. Chain Model
Signature Generation at Ts, Signature Verification
at Tv. Vertical arrows show the point in time used
for validation of the superordinate certificate.

Signature Validation. We
will now define the inference
rules we use to validate sig-
natures, i.e. derive valid for
a Signature. The rules depend
on the used certification path
validation model. As men-
tioned in the introduction, we
use the chain model shown
in Fig. 1 instead of the cur-
rent Internet standard (shell
model). This allows us to ex-
ploit the chronological order-
ing of signatures as e.g. pro-
vided by FSS. In the chain model all signatures in the chain are validated at the
time of their generation, meaning revocation and certificate validity is checked
for that time. To describe the shell model to analyze other scenarios, different
inference rules have to be defined. For a detailed discussion of validity models
see e.g. [3,7].

Definition 2 (Inference Rules). Statements can be derived from an existing
Viewt according to the following rules:

Certificate Validity ∀ CA,A, ir ≤ iv, ic ∈ I1, iv ∈ I2 : Trust(CA, I1),
Cert(CA,A, ic, I2), (¬Revoc(CA, CCA,A,ic,I2 , ir)) ` Valid(CCA,A,ic,I2 , iv)

Signature Validity ∀ CA,A, D, is ∈ I2 :
Valid(CCA,A,ic,I2 , is),Signature(A, D, is) ` Valid(SA,D,is)

Note, to extend the model to certificate chains of arbitrary length, one simply
considers certificates as signed documents while processing the chain, and derives
the validity accordingly.

So far our model is static. To allow the definition of non-repudiation we
introduce transitions between Views. The transitions model that new information
enters a users View in form of certificates, signatures or revocation information.
Besides that, a user might trust a new (Sub-)CA.

Definition 3 (Time & Transitions). Let Viewt be the View at time t and

Viewt
trans−−−→ Viewt+1 denote the transition from Viewt to Viewt+1. Let CA denote

a (Sub-)CA, A an end-entity’s identity, D a document and I an interval. We
allow the following four transitions between Views:

– Viewt
sign(A,D,i)−−−−−−−→ Viewt+1 adds Signature(A, D, i) to View.

– Viewt
issue(CA,A,i,I)−−−−−−−−−−→ Viewt+1 adds Cert(CA,A, i, I) to View.



– Viewt
trust(CA,I)−−−−−−−→ Viewt+1 adds Trust(CA, I) to View.

– Viewt
revoke(CA,Cα,β,γ,ε,i)−−−−−−−−−−−−−→ Viewt+1 adds Revoc(CA, Cα,β,γ,ε, i) to View.

Please note that derived statements are temporary. After a transition between
two views, the inference rules are used again, to obtain the full set of statements.
With View we denote the set of all statements that can be inferred from View.
So, if stmt ∈ Viewt it does not have to be the case that stmt ∈ Viewt

′
for t 6= t′.

For example, if a certificate gets revoked, Valid might be inferable beforehand
but not after Revoc has been added to the View.

2.2 Non-Repudiation

In this work we assume adversaries that try to break the non-repudiation prop-
erty and to which we refer as repudiation adversaries. The goal of such an ad-
versary is to retroactively invalidate a signature, validly generated by herself.
The adversary has access to the corresponding key pair, including the secret key
and the certificate. The adversary might also have different other key pairs and
certificates, possibly issued by other CAs. We give the classic non-repudiation
definition [12] in our model. This allows a more precise analysis of repudiation
adversaries.

Definition 4 (Non-Repudiation). A PKI offers non-repudiation if the fol-
lowing implication is always true, even in presence of a malicious end-entity
that might sign arbitrary messages, request new certificates and ask any CA to
revoke any of her certificates at anytime.

∀ i, t ≤ t′ : Valid(SA,D,i) ∈ Viewt ⇒ Valid(SA,D,i) ∈ Viewt
′
.

We briefly discuss the implications of this definition. The left part of the impli-

cation – Valid(SA,D,i) ∈ Viewt implies that

{Signature(A, D, i),Trust(CA, I1),Cert(CA,A, ic, I2)} ⊆ Viewt

with ic ∈ I1, i ∈ I2 according to the previously given inference rules and

definitions. Furthermore, Revoc(CA, CCA,A,ic,I2 , ir) 6∈ Viewt for all I2 3 ir ≤
i. In other words, three things must be in Viewt: (i) trust in the certification
authority CA that issued the end-entity certificate for the document signing
entity A, (ii) the certificate of A that has been issued while CA has been trusted,
(iii) a signature on the verified document D that has been issued by the end-
entity A while his certificate has been valid, i.e. was not revoked or expired. The
right part of the implication only differs in the time of inference of the Valid
statement. Thus, everything above must hold for all future points in time t′.

Accordingly, the goal of the adversary is to produce a valid document signa-
ture Signature(A, D, i) such that there exists a point in time t′ where the signa-
ture is verified as invalid, after it has been verified as valid. Therefore, we define
backdated revocation and show, that its prevention implies non-repudiation and
vice versa in the chain model.



Definition 5 (Backdated Revocation). Let Viewt be the View at time t and
Viewt+1 denote the view after a transition. According to the revocation transition,
backdated revocation is defined as:

Viewt
revoke(CA,CCA,A,ic,I ,ir)−−−−−−−−−−−−−−−−→ Viewt+1, if ∃ Viewt

∗
3 Valid(SA,D,is), with t∗ ≤

t ∧ is ≥ ir.

Theorem 1 (Non-Repudiation ⇔ No Backdated Revocation). A PKI
offers non-repudiation according to Definition 4 if and only if it does not allow
backdated revocation according to Definition 5.

Proof. ⇐: If there was a successful repudiation attack, then there must exist two

Views Viewt ⊇ {Valid(SA,D,is),Trust(CA, I1),Cert(CA,A, ic, I2)} and Viewt
′ ⊇

{Trust(CA, I1),Cert(CA,A, ic, I2),Revoc(CA, CCA,A,ic,I2 , ir)}, with t ≤ t′, ir ≤
is. As Valid(SA,D,is) is contained in Viewt, it can not contain Revoc(CA, CCA,A,ic,I2 ,
ir). Hence, Revoc(CA, CCA,A,ic,I2 , ir) must have been added later, which exactly
corresponds to Definition 5.
⇒: If the PKI allows backdated revocation, the adversary is allowed to ask CA

to add Revoc(CA, CCA,A,ic,I2 , ir) with ir ≤ is to the Viewt
′
. ut

3 Enabling Non-Repudation

Theorem 1 directly shows the impossibility to achieve non-repudiation if back-
dated revocation is allowed. Hence, a PKI that offers non-repudiation must not
allow backdated revocation. However, when considering the facets of backdated
revocation there are different security goals that contradict each other. This con-
flict needs to be resolved, and is discussed in the following.

Contradicting Security Goals. We have learned from our formal model, that
there is no way to guarantee non-repudiation in case backdated revocation is al-
lowed. On the other hand, backdated revocation is required in certain scenarios,
namely whenever it is possible that the signature key might get compromised
and maliciously used without being noticed immediately by the key owner. For
example consider a classical setup for digital signatures where the private key is
stored on the user’s machine (e.g. PC). Here, the detection of a key compromise
may take some time in which the adversary who stole the key may already have
generated signatures. The phase between key compromise and the observation
of the compromise (followed by the revocation) is called gray phase. The gray
phase in this case however can be very long, such that it is clearly impossible to
prohibit backdated revocation. This is because backdated revocation is required
to invalidate the signatures generated by the adversary before the compromise
detection.

Thus, in order to be able to prohibit and subsequently prevent backdated
revocation, scenarios with a (possibly large) gray phase must be excluded or
the gray phase must be eliminated by technical means. Therefore, in scenarios
that require non-repudiation, the secret key has to be protected in a way that
prevents unnoticed compromises. A common solution that allows for a minimal



gray phase is to store keys on smart cards, trusted platform modules (TPM)
etc. Private keys are not extractable from these devices and can only be used
when the according secret, e.g. PIN, is known. This allows for the assumption
of “immediate” key compromise detection and subsequently the prohibition of
backdated revocation in the sense that an adversary is not able to immediately
crack the additional secret (e.g. PIN) and thus use the stolen key before the key
compromise, i.e. disappearance of the key storage device, is detected. Note, that
in Section 5 we show how our solution supports immediate compromise detec-
tion for end-entities. This further justifies the assumption of a marginal gray
phase. In general, backdated revocation is not necessary when the gray phase is
marginal.

How to prevent Backdated Revocation. With the aforementioned it is suffi-
cient and legitimate to prohibit backdated revocation. Nevertheless, the question
remains how to enforce the prohibition in practice, i.e. how to implement our
model. We stick to the PKI setting and hence we assume, that the CA as TTP is
the only entity that can revoke certificates. Therefor it must be possible for the
CA to ensure that the revocation only invalidates signatures that were not as-
sumed to be valid before. This can either be done by explicitly defining the views
V iewt and binding each signature, as well as the revocation, to a certain view,
using a globally visible and unique index t for views and signatures. Or second,
to define V iewt implicitly by maintaining a local chronological order among the
signatures made with one key using a local immutable index. By binding the
revocation to the current index, it is correctly linked into the chronological or-
der of the signatures. Note, that this requires the responsible CA to know the
correct current local index.

The first approach is followed by the application of time-stamps, using real
time as the global index. The time-stamps are generated by TTPs called Time-
Stamping Authorities (TSA). This approach is widely accepted to be correct but
also comes with a lot of inefficiencies. To evaluate our model, we proof that the
time-stamping approach allows to implement our model s.th. the resulting PKI
provides non-repudiation. The proof can be found in Appendix A together with
a discussion of its inherent inefficiencies.

For our new solution we use the second approach of local indexing, which
can be realized using forward secure signature schemes. This is described in the
following section.

4 Sign & Report

In this section, we propose our solution applying local indexing to enforce non-
repudiation using forward secure signature schemes (FSS). It does not have the
disadvantages and inefficiencies of the TSA approach (cf. Appendix A). Further-
more, we show how compromise detection for end-entities can easily be incorpo-
rated to prevent gray periods.

As some reader might not be familiar with the concept of FSS, we first infor-
mally recall the related definitions and discuss some properties of such schemes



more detailed. For a formal treatment we refer the reader to [4]. We will not
discuss the definitions regarding traditional signature schemes like existential
unforgeability under chosen message attacks (EUF-CMA). Here we refer the
reader to [11]. Forward security can only be achieved using key evolving signa-
ture schemes, which will be explained first. Afterwards, we show how to imple-
ment the PKI model using FSS, such that backdated revocation can efficiently
be prevented.

Key Evolving Signature Schemes. Once generated, a key pair remains un-
changed for the whole lifetime, in a traditional signature scheme (SIG). In con-
trast, the secret key sk changes over time, while the public key pk remains the
same, in a key evolving scheme (KES). More specific, the lifetime of a key pair
is split into several time-periods, say T . The number of time-periods T becomes
a public parameter of a KES and is taken as an additional input by the key gen-
eration algorithm. The key generation algorithm outputs (sk0, pk), where sk0

is the first secret key. In contrast to SIG, a KES has an additional key update
algorithm, which updates the secret key at the end of each time period. The sign
algorithm takes as an additional input an index of a time-period. This index also
becomes part of the signature and is therefore also available for the verify algo-
rithm. Finally, if a user generates a valid key pair and the key update algorithm
is called at the end of each time-period, then a signature generated with the
current secret key and the index of the current time period can be verified by
any user with the corresponding public key.

Forward Secure Signature Schemes. A forward secure signature scheme
(FSS) is a KES that provides the forward security property. The main idea be-
hind forward security is that even after a key compromise all signatures created
before should remain valid. The forward security property guarantees, that an
adversary that is allowed to launch a chosen message attack for each time-period
and learns the secret key of an adaptively chosen time-period i is unable to pro-
duce a valid forgery for time-period j < i. Note that forward security implies
the standard notion of EUF-CMA extended to the case of KES. To make use of
the forward security property in practice, a certificate is revoked from the index
of the current time period onwards instead of revoking the complete certificate
[7] in the case of key compromise.

Defining the time periods for FSS. One issue with FSS in practice is how
the key update algorithm is triggered. It can either be called manually by the
user, scheduled to run at the end of the time period, or be part of the signature
algorithm, depending on the way the time periods are defined. Time periods can
be defined in terms of time, e.g. one time period corresponds to one day, or the
number of created signatures, i.e. a time period ends after the key was used to
create a certain number of signatures. In the first case, the key update algorithm
must be triggered periodically. This can only be automated on systems that have
an internal clock and that are running each time an update is necessary. On
smart cards, which are the common place to store end-entity signature keys, a
manual update is required. This seems impractical. As an on-time key update is



required to preserve forward security, real time based time periods are problem-
atic in practice. FSS schemes based on the number of generated signatures do
not have these problems. Key update can be performed automated, based on a
counter contained in the key holding device. Yet, in this case, the key indices are
not linked to real time, which complicates correct revocation in practice as the
index at the time of compromise must be known. However, our solution shows
that this is achievable compared to the key update problem. Thus, we consider
FSS where the periods are based on the number of signatures, namely an FSS,
that evolves the key after each signature generation, as e.g. XMSS [8].

Sign & Report. We now show how to use a FSS, where a key update is per-
formed after each signature, to implement a PKI according to our model, that
efficiently prevents backdated revocation. If we used an FSS with real time based
key update, the implementation would be straight forward, similar to the time-
stamping approach. As we use an FSS where the key update occurs after each
signature because of the discussed drawbacks of real time based key updates,
things are a bit different. The validity periods of certificates, as well as the time
interval for the trust relation are now described on the basis of indices. In gen-
eral, these intervals will be [0, T − 1] for a key pair with T time periods. The
indices used in Cert, Signature, Revoc and Valid statements correspond to key
indices. For the first two types of statements, it is the current index of the key
pair used to generate the signature. For the Revoc statement, it is the index
starting from which on a key pair is revoked and for the last one it is the index
at which revocation is checked. The indices of the views use real time. Please
note that it is possible to additionally use real time validity periods, if this is
required, e.g. for business purposes.

To prevent backdated revocation in such a PKI, a revocation must include
the current index of an end-entity’s key pair. Therefore the responsible CA must
know this current index and be able to verify the correctness of this index. To
achieve this, we define a Sign & Report approach for FSS.

Definition 6 (Sign & Report PKI). A Sign & Report PKI implements the
model defined in Section 2 replacing the abstract indices and intervals as de-
scribed above. Let R denote a trusted third party in the PKI, e.g. a CA, which
is responsible (and exclusively able) to issue the revocation of an end-entity A’s
certificate CCA,A,ic,I , when requested by A. Whenever A generates a signature,
the used key index i∗ is reported to R that stores i∗. On input of revocation request
by A, R publishes Revoc(CA, CCA,A,ic,I , i

∗ + 1).

We next show that a Sign & Report PKI provides non-repudiation, assumed
that the index reporting is secure.

Theorem 2 (Sign & Report PKIs provide non-repudiation). A Sign &
Report PKI as defined above provides non-repudiation according to Definition 4.

Proof. If the index reporting is implemented in a secure way, i.e. it is not possible
for an end-entity to manipulate the reporting, backdated revocation is efficiently
prevented. This is the case, because the index used for revocation is greater than



any index used by this end-entity before. The non-repudiation property follows
from Theorem 1. ut

Key Compromise Detection. The Sign & Report PKI makes it easily possible
to monitor key usage and support end-entities in the detection of malicious
key usage and subsequent revocation. Therewith, the justification for immediate
revocation can be strengthened. The detection is made possible as, different from
the TSA approach, for each end-entity a specific TTP is responsible.

Definition 7 (Sign & Report PKI with Compromise Detection). A Sign
& Report PKI with Compromise Detection is a Sign & Report PKI as defined in
Definition 6 with the additional measure, that R requests a reconfirmation from
A using an independent channel, whenever a new key index i∗ is reported. R

only accepts the new index if the reconfirmation succeeds. Otherwise, R publishes
Revoc(CA, CCA,A,ic,I , i

∗)

5 Implementing Sign & Report

In this section we present a practical implementation of the Sign & Report
approach from above. More specifically we show how to securely implement the
index reporting, as everything else is straight forward. Note that we apply an
FSS, namely XMSS, that evolves the key after each signature generation. Thus,
each signature is directly linked to a unique index. We also present extensions
that allow protection from undetected key access and a pay per use pricing model
for certificates. As discussed before, we assume that the private key is stored on a
smart card and therefore can assume immediate revocation (cf. Section 3). With
this preliminary, we define an online protocol to prevent backdated revocation.

Index Reporting Protocol. The basic idea of Sign & Report is that the
current index is reported to the CA (or some TTP that maintains the revocation)
immediately after signature generation. This requires an online step, yet seams
reasonable, as most of today’s computers are nearly always online. Thereby, the
CA is enabled to keep track of the signing index and prevent the key owner
from backdated revocation and repudiation of signatures. Thereby, it does not
matter who reports the index, the verifier or the signer itself and this might be
chosen depending on the specific application. In the first case, reporting can be
performed in one combined step during online revocation status checking and
would reflect the natural ambition of the verifier to obtain non-repudiation. The
second case is desirable when the verifier is offline. However, then the signer
needs to be able to prove the reporting. This can be realized by a validity token
obtained from the CA and additionally serving as a proof for the absence of a
revocation. Thus, additional revocation checking is made obsolete.

Figure 2 shows the protocol for the second case, but the adaptation to the
first is straight forward. After signature generation (step (a)) the signature is
sent to the CA (step (b)). The CA checks the signature for validity (step(c))
and generates a validity token for the signature index to confirm the logging.
Herein, the signature verification ensures, that the report and confirmation of



CA Signer Verifier

(a) σ = Sign(sk,m)

(b)
σ←−

(c) If Verify(pk, σ) and
pk is not revoked:
generate proof π

(d)
π−→

(e)
σ,π−→

(f) If Verify(σ,m) and
(g) Verify(π): accept

Fig. 2. Index Reporting Protocol

wrong index information is prevented. The token is sent back to the signer and
subsequently transmitted (together with the signature) to the verifier (steps (d)-
(e)), who can now validate the signature and the token.

By the index, the validity token is bound to a specific signature. Thus, it can
be used for all future verifications without further online requests. Additionally,
due to the forward security, the token for a certain index i can serve as a validity
token for all preceding indices. Thus, if several signatures have to be validated,
the logging request can be aggregated to only one, by requesting the token for
the highest index.

The validity token can be realized as public key - index pair signed by the CA.
One drawback of such a signed validity token is that the signature on the token
has to be validated in addition to the validation of the end-entity signature.
Furthermore, the size of the token is not optimal and signature generation is
computationally complex. We propose to apply the Merkle tree variant of the
Novomodo system [16] to generate the validity token (cf. Appendix B for details).

Incorporation of Compromise Detection. In the index reporting proto-
col, the issue of compromise detection and the prevention of gray periods can
be addressed by adding an additional reconfirmation procedure for signature
generation. Before confirming the logging of the index, the CA can request a
reconfirmation from the key owner. A possibility to do so is to apply mobile
transaction numbers as known from eBanking or similar to the usage presented
in [6]. This helps to detect malicious key usage, as the key owner is informed
about key usage via an independent channel. By additionally sending the docu-
ment itself to the CA, the signed document could be sent back and displayed on
a smartphone for verification. Therewith, undetected usage of the key is signifi-
cantly less probable, and even cases where e.g. the smart card is left unwatched
for a certain time period and malicious key usage does not necessarily involve
the observed loss of the card can be detected.

Efficiency. Besides cutting down on the maintenance of an additional and in-
dependent TSA infrastructure and the overhead of time-stamp validation, our
approach saves one online request considering the whole process from signature
generation to verification. While in the TSA approach the time-stamp and the
revocation status need to be requested, one online request, namely the index
logging request, is sufficient in our approach.



6 Conclusion

In this work we showed how to extend the existing formal models for a PKI
such that it becomes possible to describe the non-repudiation property. Using
our model, we proved that non-repudiation is achieved, if and only if backdated
revocation is prevented (assuming CAs are trustworthy and the used crypto-
graphic algorithms are secure). The main improvement of our model is that it is
dynamic. It might also be useful in analyzing other properties of PKIs. Further-
more, we showed how to realize our model using FSS. We presented an index
reporting protocol to implement this new approach. It has some clear advantages
compared to today’s solutions regarding computation costs and storage. Further-
more, it allows for a convenient integration of an additional reconfirmation step
to detect compromises and improve the overall security. Besides that, the index
reporting approach allows for another interesting application we shortly want to
mention, namely the realization of a pay per use pricing model. This is possible,
as the CA is enabled to monitor the frequency of key usage. Thus, the costs for
a certificate can be spread over the whole key lifetime, therewith the costs to get
a certificate can be lowered significantly. This might on the one hand help to de-
crease the initial barrier of buying a certificate for end-entities that rarely apply
electronic signatures. On the other hand revenues for the CAs are generated at
the time when the efforts arise for the management of certificates.

While Sign & Report improves the performance of document signatures it
still requires one online step per signature, i.e. the signer has to communicate
with a TTP during signature creation (This step can be shifted to the verifier,
but it remains one online step per signature). We were unable to get rid of this
costly step. Hence the question arises if it is possible at all to prohibit backdated
revocation by using an “offline” solution, namely a solution where the end-entity
does not report information about each signature to a TTP? As we assume the
signer as well as the verifier to be potentially malicious, neither of them can be
trusted. A trusted device in possession of the signer or verifier can also not be
trusted, as it might in the long term be possible to tamper with or it might
get destroyed. In both cases, i.e. using a local or a global index, the indexing –
especially the order – and the linking between indices and signatures must be
immutable. Furthermore, using local indexing the CA must be able to obtain
the correct current value of the index used by the user in case of a revocation.
Given these constraints it seems impossible to us to solve this problem without an
online step. At least with existing techniques we see no solution to this challenge.
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A Application of Time-Stamping Authorities

To evaluate our model, in this section we show that the common approach of
time-stamping allows to implement a PKI that provides non-repudiation. To
implement a PKI according to the above model using time-stamping, a trusted
third party called Time-Stamping Authority (TSA) adds a trusted time to each
signature. This can be implemented in different ways [1,2,13]. The most common
one is to sign the signature together with a time-stamp. The signature time of
a document signature as well as the issuance time of a certificate are given by
a time-stamp. Validity periods of certificates are defined by the issuing CA and
the time interval for the trust statement is defined by the user (or according
to the certificates of higher levels in the hierarchy). Both are defined in terms
of real time. If a CA is asked to revoke a certificate, it uses the current time
as revocation index. All views are also bound to real time. So all indices and
intervals are directly linked to real time and an order is defined according to the
calendar.

Definition 8 (Sign & Stamp PKI). A Sign & Stamp PKI implements the
above model using the real time for all indices and intervals. In a Sign & Stamp
PKI, every signature is time-stamped by a trusted third party called time-stamping
authority (TSA). If a CA is asked to revoke a certificate, it uses the current time
as revocation index.

In a Sign & Stamp PKI times in statements and Views have a strictly monotonic

increasing order, e.g. a signature generated at time t can not be in a Viewt
′

with
t′ < t. As revocations always include the current time, backdated revocation is
impossible (recall that we assume the used signature schemes to be perfectly
secure). The following theorem follows immediately from Theorem 1 and the
fact that a Sign & Stamp PKI prevents backdated revocation.

Theorem 3 (Sign & Stamp PKIs provide Non-Repudation). A Sign
& Stamp PKI according to Definition 8 provides non-repudiation according to
Definition 4.

Disadvantages of the TSA approach. We have seen that the TSA approach
enables non-repudiation. Yet, it comes with many disadvantages. First, the setup
and maintenance of an additional and independent TSA infrastructure and the
trustworthiness of the TSAs to apply the correct date and time is required. Sec-
ond, it introduces overhead during signature generation (for the online request
and generation of the proof of existence) and during validation (for the proof
validation). Third, storage overhead is introduced, i.e. time-stamps or MACs
must be stored, in addition to the signature itself, or a huge amount of transient
keys must be managed. Database based approaches require the central storage of
all issued signatures. And fourth, time-stamps relying on electronic signatures
themselves face the same problems concerning compromise and expiration as
common electronic signatures do. That is, upon the compromise of a TSA or
any superordinate CA, the issued time-stamps become invalid and the proof of
existence is lost. On the other hand, database based approaches solely rely on
the security of the central database.



B Validity Tokens using Novomodo

Instead of using hash chains as in the basic Novomodo system [16] one can use
Merkle hash trees. This significantly improves the verification time. To realize the
validity tokens, the root of a Merkle tree with T leaves (where T is the number
of periods, the respective key pair is valid for) is included into the certificate.
If the certificate is valid in period i, the CA releases the leaf at position i and
the siblings on the path to the root. QuasiModo trees [10] allow even smaller
trees and on average shorter paths to the tree root by using interior nodes, yet
for standard Merkle trees highly efficient traversal methods are available [8].
The validity tokens of the revocation tree can be generated in a pseudorandom
fashion, comparable to the approach used for XMSS key generation [8]. An
application of the hash function gives us the leaves from which the Merkle tree
is computed. Furthermore, the tree traversal algorithm from [8] can be used to
evenly split the computational effort over all periods. To prevent delays, a certain
number of validity tokens can be precomputed and stored, reducing the effort to
a table lookup during the online request.


